

MEscope Application Note 39 FRF-Based Curve Fitting

The steps in this Application Note can be carried out using any MEscope package that includes the **VES-4000 Modal Analysis** option. Without this option, you can still carry out the steps in this App Note using the **AppNote39** project file. These steps might also require a *more recent release date* of MEscope.

APP NOTE 39 PROJECT FILE

• To retrieve the Project for this App Note, <u>click here</u> to download AppNote39.zip

This Project file contains numbered Hotkeys & Scripts for carrying out the steps of this App Note.

• Hold down the Ctrl key and click on a Hotkey to open its Script window

ODS ANALYSIS VERSUS MODAL ANALYSIS

Modal analysis is used to characterize *resonant vibration* in machinery & structures. If a noise or vibration problem is due to the *excitation of a structural resonance*, then the structure either must be isolated from the excitation source, or physically modified to reduce its level of vibration.

ODS Analysis shows how a machine or structure is vibrating, and where *excessive vibration levels* occur for various Points & directions.

Modal Analysis indicates whether the excessive vibration is due to excitation of a structural resonance.

ODS's & mode shapes *can be compared* in MEscope to determine *how a resonance participates in* (or contributes to) the *overall vibration level* in a machine or structure.

WHAT IS FRF-BASED CURVE FITTING?

FRF-based curve fitting is a process of matching a *parametric model* of an **FRF** (in a *least squared error* sense) to experimental **FRF** data.

The *unknown parameters* of the parametric model are **modal frequency, damping & residues** (mode shape components).

The outcome of curve fitting is a set of modal parameters (**frequency, damping & mode shape**) for each mode that is identified in the experimental data.

After curve fitting is completed, mode shapes are stored into a Shape Table from which they can be displayed in animation on a 3D model of the test article.

CURVE FITTING STEPS

- 1. Determine the Number of Modes in a frequency band of measurement data
- 2. Estimate modal Frequency & Damping for all modes in the frequency band
- 3. *Estimate* modal **Residues** (mode shape components) for *each* mode and *each* measurement

CURVE FITTING GUIDELINES

1. Overlay the Measurements

A resonance peak should appear at the same frequency in every **FRF**, except where **node points** (*zero valued residues*) of the mode shape occur.

• Execute **Format** | **Overlay** to overlay the **FRFs** and look for *resonance peaks* at the *same frequency* in all **FRFs**

2. Inspect the Impulse Response Functions (IRFs)

• Execute Transform | Inverse FFT to transform each FRF into its corresponding IRF

All the IRFs should exhibit a *damped sinusoidal decay to nearly zero* at the end of each M#, as shown below.

• Wrap around error (shown below) is not harmful to frequency domain curve fitting

Impulse Response Functions (IRFs).

3. Use the Mode Indicator

• *Press* the **Count Peaks** button on the **Mode Indicator** tab to count the number of resonance peaks (modes) in a cursor band.

The number of Peaks counted is displayed in the Peaks box and in the Modes box on the Frequency Damping tab.

4. Use the Band cursor

Curve fit only those portions of data that contain valid resonance peaks.

If the **Band** cursor is displayed, *only* data in the cursor band is used for curve fitting

If no Band or Peak cursor is displayed, all the data in each M# is used for curve fitting

5. Verify Fundamental Mode Shapes

The low frequency modes in most structures have *simple bending* and *simple torsional* (*twisting*) mode shapes.

- Estimate modal parameters for a few of the *lower frequency* (*fundamental*) modes
- Save the results into a Shape Table and display the mode shapes in animation to verify their validity

Points that animate *substantially different* from neighboring Points on the structure model are indications of *poor* **measurements**, *poor* **curve fits**, or **both**.

6. Compare Results from Different Curve Fitting Methods

Curve fit the FRFs using more than one curve fitting method and compare mode shapes from different methods.

- Execute **Display** | **MAC** (**Modal Assurance Criterion**) to numerically compare mode shapes between different curve fitting methods
- Execute Animate | Animate a Pair | Animate Shapes to display shapes side-by-side from two Shape Tables

STEP 1 - CURVE FITTING IN A DATA BLOCK

Press Hotkey 1 Open Curve Fitting

FRF-based curve fitting can only be done in a Data Block containing frequency domain data.

When curve fitting is initiated, the following changes take place in a Data Block window.

- **M#s** are displayed in the *upper-left corner* of the Data Block window
- A **Mode Indicator** is displayed in the *lower-left corner* of the Data Block window
- The Curve Fitting Tabs are displayed on the *upper-right corner* of the Data Block window
- The **Modal Parameters** spreadsheet, for viewing and editing the modal parameter estimates, is displayed on the *lower right corner* of the Data Block window
- The **Curve Fitting Toolbar**, (containing frequently used commands), or the **Curve Fitting Ribbon** is displayed in the Toolbar area above the Data Block window

Data Block Window Open for Curve Fitting.

CURVE FITTING SPLITTER BARS

During curve fitting, two additional *splitter bars* are displayed in the Data Block window.

A vertical red splitter bar separates the Curve Fitting tabs from the M#s Display & Mode Indicator graphs

A *horizontal blue splitter bar* separates the **M#s** and Mode Indicator graphs

• *Drag* the *red splitter bar horizontally* or the *horizontal blue splitter bar vertically* to re-size the four curve fitting areas of the Data Block

DELETING ALL CURVE FITTING DATA

All curve fitting data is retained in a Data Block file when it is saved as part of a Project.

Before starting a new curve fitting session, all previous curve fitting data should be deleted from the Data Block.

- Execute Curve Fit | Delete All Fit Data
- *Click* on **Yes** in the dialog box that opens

STEP 2 - COUNTING RESONANCE PEAKS

• Press Hotkey 2 Count Peaks

The first step of modal parameter estimation is to determine how many modes are represented by resonance peaks in a frequency band of the **FRFs**.

Each *peak* in an **FRF** is evidence of *at least one mode*.

There are two ways to determine the number of modes represented by *peaks* in the FRFs.

- 1. *Press* the Count Peaks button on the Mode Indicator tab of the Curve Fit panel
- 2. **Overlay** all **M**#s, visually inspect them for resonance peaks, *un-check* the **Count Peaks** box and *enter* the number of peaks into the **Modes** box on the **Frequency Damping** tab

The **Count Peaks** button on the **Mode Indicator** tab is used to calculate a Mode Indicator function using *all* (or *selected*) **M#s** and count the resonance peaks *above* the **Noise Threshold** line on the Mode Indicator.

When **Hotkey 2** is *pressed*, a dialog box will open allowing you to choose the type of Mode Indicator function to calculate.

Type of Mode Indicator Dialog Box.

• Press the OK button

The next dialog box will let you choose which part of the FRF data to use to calculate the Mode Indicator.

BLK: FRFs: - Curve Fit Mode Indicator Count		
Counts the peaks on the current Modal Indicator. Data used to Calculate Indicator		
Imaginary	~	
ОК	Stop	

The **Real Part**, **Imaginary Part**, or **Magnitude** of *all* (or *selected*) **M**#s of **FRF** data is used to calculate the Mode Indicator.

• **Press** the **OK** button

Next, a dialog box will open for entering a percentage for setting the height of the noise threshold bar.

BLK: FRFs: - Curve Fit Mode Indicator Count		
Counts the peaks on the current Modal Indicator. Threshold (5 to 95)		
20		
ОК	Stop	

• **Press** the **OK** button

After the Mode Indicator has been calculated and its peaks counted, a graph of the Mode Indicator is displayed in the *lower left corner* of the window.

The peaks above the **Noise Threshold** (*horizontal line*) on the Mode Indicator graph are counted Each modal peak counted is numbered and indicated with a **red dot** at the peak

The Peaks box on the Mode Indicator tab contains the number of peaks counted, in this case 10 peaks

Mode Indicator Showing 10 Resonance Peaks Counted.

STEP 3 - ESTIMATING MODAL FREQUENCY & DAMPING

Press Hotkey 3 Estimate Frequency & Damping

In many cases (especially with *noisy* data), it is better to *build up a list* of modal frequencies & damping in the **Modal Parameters** spreadsheet *by curve fitting in small cursor bands* using as few modes as possible.

Since these **FRFs** are relatively noise free, when **Hotkey 3** is *pressed*, **99 FRFs** are curve fit using the **Global Polynomial** method and modal **frequency & damping** *for all 10 resonance peaks* are estimated at once.

When curve fitting is completed, modal frequency & damping for 10 modes is listed in the **Modal Parameters** spreadsheet, as shown below.

Frequency & Damping Estimates for 10 Modes.

VERTICAL FREQUENCY LINES

The *frequency estimate* for each mode in the **Modal Parameters** spreadsheet is *displayed as a vertical line* on the Mode Indicator graph.

• Display the **Band** cursor and surround several of the vertical lines on the Mode Indicator

The modes within the Cursor band are selected in the Modal Parameters spreadsheet, as shown above.

HORIZONTAL DAMPING LINES

The *damping estimate* for each mode is *displayed as a horizontal line* crossing the vertical frequency line where,

Length of the horizontal line $\rightarrow 2\sigma$

σ → half-power-point (or 3-dB-bandwidth) damping (in Hz)

The half-power-point damping (2σ) is *approximately equal* to the width of the resonance peak at 50% of the FRF *peak magnitude squared*

The **FRF magnitude squared** is a *power quantity*, hence the name **half-power-point** damping.

The **half-power-point** damping (2σ) is *approximately equal* to the width of the resonance peak at 70.7 % of the **FRF** *peak magnitude* value

Zoomed Display Showing Frequency & Damping Estimates.

• Execute **Display** | **Zoom In** and zoom the display around several resonance peaks, as shown above

A choice of three different curve fitting methods for estimating frequency & damping is also shown in the figure above. Each method can be used to estimate frequency & damping.

LOCAL POLYNOMIAL METHOD

The Local Polynomial method estimates frequency & damping by curve fitting each FRF.

Local Polynomial curve fitting is helpful when the *resonance peaks do not line up* in a set of **FRFs** due to mass loading during data acquisition.

GLOBAL POLYNOMIAL METHOD

The Global Polynomial method estimates frequency & damping by curve fitting all (or selected) FRFs.

Modal **frequency & damping** are *global properties of most structures*, meaning that they are the same no matter where data is acquired from the structure.

MULTI-REFERENCE POLYNOMIAL METHOD

The Multi-Reference Polynomial method is normally used with a set of multiple-reference FRFs.

Multi-Reference Polynomial method is used to estimate frequency & damping for *closely-coupled modes, repeated roots, and local modes*.

For a set of **single-reference FRFs**, the **Multi-Reference Polynomial** method gives the same estimates as the **Global Polynomial** method.

FREQUENCY & DAMPING TERMINOLOGY

Modal frequency & damping are defined in several ways.

 $\mathbf{p}(\mathbf{k}) = -\sigma(\mathbf{k}) + \mathbf{j}\omega(\mathbf{k}) \Rightarrow$ pole location of mode(k) (in Hz)

 $\omega(\mathbf{k}) \rightarrow$ damped natural frequency of mode(k) (in Hz)

 $\Omega(\mathbf{k}) \Rightarrow$ undamped natural frequency of mode(k) (in Hz)

$$\Omega(\mathbf{k}) = \sqrt{\varpi(\mathbf{k})^2 + \sigma(\mathbf{k})^2}$$

 $\sigma(\mathbf{k}) \Rightarrow$ damping decay constant (also called the **half-power-point** damping or **3-dB-bandwidth**) of mode(k) (in Hz)

 $\zeta(\mathbf{k}) \rightarrow$ damping ratio (in %)

Half-power-point damping	$(\omega_2 - \omega_1) = 2\sigma(k) = \Delta \omega_{3dB}(k)$ (Hz)
(3 dB bandwidth) damping	$\omega_1 = \omega(k) - \sigma(k)$ $\omega_2 = \omega(k) + \sigma(k)$
Damping Ratio (Percent of critical damping)	$\zeta(\mathbf{k}) = \frac{\sigma(\mathbf{k})}{\sqrt{\omega(\mathbf{k})^2 + \sigma(\mathbf{k})^2}} (\%)$
Damping Decay Constant	$\sigma(\mathbf{k}) = \frac{\omega(\mathbf{k})\zeta(\mathbf{k})}{\sqrt{1 - \zeta(\mathbf{k})^2}} (\text{Hz})$
Loss Factor	$\eta(k) = 2\zeta(k)$
Quality Factor	$Q(k) = \frac{1}{\eta(k)}$

STEP 4 - ESTIMATING RESIDUES

• *Press* Hotkey 4 Estimate Residues

After modal frequency & damping have been estimated, modal *residues* (mode shape *components*) are estimated during a *second curve fitting step*.

When **Hotkey 4** is *pressed*, estimates of residue *magnitude & phase* for *each mode and each* **FRF** are added to the **Modal Parameters** spreadsheet.

• *Scroll* through the **M#s** and release the mouse button to list the residues for the **M#** being displayed

Residue Curve Fit for 10 Modes and 99 FRFs.

FIT FUNCTION

After the modal **frequency**, **damping**, **& residue** have been estimated for each mode, a **red Fit Function** is overlaid on each **M**#, as shown above.

The **Fit Function** is calculated using the modal parameter estimates

If the modal parameters are accurate, each Fit Function will closely match its corresponding FRF

USING THE BAND CURSOR FOR CURVE FITTING

It is often more convenient to curve fit using *several small cursor bands* to avoid *noisy data or non-resonance peaks* in the **FRFs**.

If the Band or Peak cursor is displayed, curve fitting is done using only the data within the cursor band.

- Execute Curve Fit | Fit Function | Clear Fit Functions
- Execute **Cursor** | **Band Cursor** and *drag* the edges of the band to *enclose only six resonance peaks*, as shown below
- *Press* the **Residues** button on the **Residues Save Shapes** tab

Each **red Fit Function** is only displayed within the cursor band because only that data was used for the Residue curve fitting.

The residue estimates *might be slightly different* when residue curve fitting is done *using several smaller cursor bands* of data rather than estimating all residues at once using all the **FRF** data.

Residue Curve Fitting in a Cursor Band.

STEP 5 - QUICK FIT

• Press Hotkey 5 Quick Fit

When all resonance peaks are easily counted in a set of **FRFs**, all the data can be curve fit in one execution of the **Quick Fit** command.

Quick Fit carries out all three curve fitting steps using the methods already chosen on each Curve Fitting tab.

When Hotkey 5 is pressed, the Quick Fit results are displayed, as shown below.

Quick Fit Results from Pressing Hotkey 5.

DIVIDE AND CONQUER

The quickest way to curve fit a large set of **FRFs** with many resonance peaks is to use **Quick Fit** is several smaller bands of data.

- Display the **Band** cursor to enclose *several resonance peaks*, and execute **Curve Fit** | **Quick Fit**
- Drag the Band cursor to enclose several more resonance peaks, and execute Curve Fit | Quick Fit again

Each time the **Quick Fit** command is executed, new modal parameter estimates *are added* to the **Modal Parameters** spreadsheet

STEP 6 - COMPARING MODE SHAPES

The best way to validate your curve fitting results is to compare the mode shapes obtained from *two or more curve fitting methods*.

Press Hotkey 6 Compare Mode Shapes

When **Hotkey 6** is *pressed*, the mode shapes obtaining with the **Polynomial** method with be compared with those obtained with the Residue **Peak** method.

RESIDUE POLYNOMIAL CURVE FITTING METHOD

The Polynomial method was used by Quick Fit when Hotkey 5 was pressed.

Quick Fit uses all the modal frequency & damping estimates together with all the data for each **FRF** (or the data in a cursor band) to *simultaneously estimate* the residues for each mode and each **FRF**.

RESIDUE PEAK CURVE FITTING METHOD

The **Peak** method uses the modal frequency & damping estimates for each mode and saves a residue estimate for each mode as the *peak of the displayed data* of each **FRF**.

In this case the *peak value in the imaginary part* of the FRFs is used.

This simple SDOF method often obtains a *close approximation of each mode shape*.

When **Hotkey 6** is *pressed* the **FRFs** are *curve fit twice* and the resulting mode shapes are saved in separate Shape Tables. The **Quick Fit** results are saved in the **SHP: Quick Fit Mode Shapes** Shape Table, and the **Peak** method results are saved in the **SHP: Peak Fit Mode Shapes** Shape Table.

Then sweep animation is begin through the mode shapes in the SHP: Quick Fit Mode Shapes Shape Table.

Each mode shape in the **SHP: Quick Fit Mode Shapes** Shape Table is displayed side-by-side with its *closest matching* **mode shape** from the **SHP: Peak Fit Mode Shapes** Shape Table.

Animation of a Quick Fit vs. Peak Fit Mode Shape.

MODE SHAPE PAIR WITH MAXIMUM MAC

The *closest matching* mode shape to a shape in **SHP: Quick Fit Mode Shapes** is the mode shape in **SHP: Peak Fit Mode Shapes** that has the **Maximum MAC** value among all the mode shapes in **SHP: Peak Fit Mode Shapes**.

The **Maximum MAC** (**Modal Assurance Criterion**) value is displayed in the *upper-right corner* of the mode shape display and indicates *how closely matched* each pair of mode shapes is. These Maximum MAC values indicate *close correlation* between all pairs of mode shape estimates from the two Residue curve fitting methods.

MAC → greater than 0.90 → two mode shapes are *closely matched*

STEP 7 - REVIEW STEPS

To review the steps of this App Note,

• Press Hotkey 7 Review Steps