VIBRANT MEscope Application Note 38 Digital Signal Processing

The steps in this Application Note can be carried out using any MEscope package that includes the **VES-3600 Advanced Signal Processing** option. Without this option, you can still carry out the steps in this App Note using the **AppNote38** project file. These steps might also require a *more recent release date* of MEscope.

APP NOTE 38 PROJECT FILE

• To retrieve the Project for this App Note, click here to download AppNote38.zip

This Project file contains numbered Hotkeys & Scripts for carrying out the steps of this App Note.

• Hold down the Ctrl key and click on a Hotkey to open its Script window

THE FFT AND THE DFT

The **FFT** is a *computer algorithm* that calculates the **Digital Fourier Transform** (**DFT**) of a *uniformly sampled* time waveform. *Three equations* govern the **FFT** algorithm.

1. SAMPLED TIME WAVEFORM EQUATION

The **FFT** *assumes* that the time waveform contains **N** *uniformly spaced samples*

The *spacing* (or *resolution*) between time samples is denoted as Δt (in seconds)

The sampling time period (also called the *sampling window*), spans the time period ($t \rightarrow 0$ to T) (in seconds)

The time waveform parameters are related by the equation,

 $\mathbf{T} = \mathbf{N} (\Delta \mathbf{t})$ (in seconds)

2. DIGITAL FOURIER TRANSFORM (DFT) EQUATION

The DFT contains (N/2) uniformly spaced samples of complex (magnitude & phase) data

The *spacing* (or *resolution*) between frequency samples is denoted as $\Delta \mathbf{f}$ (in Hz)

The **DFT** is calculated over a frequency span $(\mathbf{f} \rightarrow \mathbf{0} \text{ to } \mathbf{Fmax})$ (in Hz)

The **DFT** parameters are related by the equation,

Fmax = $(N/2) \Delta f$ (in Hz)

3. SHANNON'S (NYQUIST) SAMPLING CRITERION

Shannon's Sampling Criterion says that *to calculate an accurate* DFT over the span ($\mathbf{f} \rightarrow \mathbf{0}$ to Fmax),

The time waveform *must be sampled at no less than twice* the frequency **Fmax**

The minimum sampling rate is called the *Nyquist sampling rate*

The sampling criterion relates **Fmax** and the *Nyquist sampling rate* by the equation,

Nyquist sampling rate \rightarrow 1/ $\Delta t = 2$ Fmax (in Hz)

This formula states that to obtain a valid **DFT**, a digital time waveform *must be sampled at twice* the expected value of **Fmax**.

FUNDAMENTAL SAMPLING RULE

Another important equation is derived from the three equations above.

 $\Delta \mathbf{f} = \mathbf{1}/\mathbf{T}$ (in Hz)

This equation says that the *frequency resolution* (Δf) of the **DFT** is the *inverse of the time length* (**T**) of the time domain sampling window.

SAMPLING RATE VERSUS FREQUENCY RESOLUTION

To increase the frequency resolution (reduce Δf) of a DFT, the time domain signal must be sampled over a longer time period (T).

Increasing the sampling rate $(1/\Delta t)$ of the time waveform *does not increase the frequency resolution (reduce* Δf) of its DFT.

ANTI-ALIASING FILTERS

When a continuous analog time domain signal is sampled, *frequencies higher than* **Fmax** in the signal *will fold back* and appear as lower frequencies in the **DFT**.

These *aliased high frequency components* are not part of the **DFT** at *frequencies below* **Fmax** in the original signal.

To ensure that no frequencies higher than **Fmax** are contained in a **DFT**, higher frequencies must be removed from the analog time waveform *before it is sampled*.

Frequencies higher than **Fmax** are removed using an *analog low pass filter called an* anti-aliasing filter.

Passing a time waveform through an anti-aliasing filter *before sampling it* ensures that all frequency components higher than **Fmax** are removed from the **frequency span** \rightarrow 0 to **Fmax** of the **DFT**.

All anti-aliasing filters have a *finite roll off frequency band*.

If the *cutoff frequency* (start of the filter roll off) is set to 80% of **Fmax**, or 40% of the *sampling frequency*, then 80% of a frequency span $\rightarrow 0$ to Fmax will be *alias-free*.

Most **FFT** analyzers have anti-aliasing filters with a *cutoff frequency* set to **80% of Fmax**, or **40%** of the *sampling frequency*.

FOURIER SPECTRUM (DFT)

Several types of frequency spectra can be calculated in MEscope.

The Fourier spectrum is the DFT of a time waveform

The **FFT** algorithm is used to calculate the **DFT** of a time waveform

The DFT is *complex valued*, with Real & Imaginary parts, or Magnitude & Phase

AUTO SPECTRUM

Each Auto spectrum estimate is calculated by *multiplying a* **DFT** *by its own complex conjugate* An *average* **Auto spectrum** is calculated by averaging together multiple Auto spectra

An Auto spectrum is real-valued, with Magnitude only

CROSS SPECTRUM

Each Cross spectrum estimate is calculated by multiplying the **DFT** of one signal by the *complex conjugate* of the **DFT** of a different signal

An average Cross spectrum is calculated by averaging together multiple Cross spectra

The Cross spectrum is complex valued, with Real & Imaginary parts, or Magnitude & Phase

POWER SPECTRAL DENSITY (PSD)

A **PSD** is an Auto spectrum *divided by the frequency resolution* of the Auto spectrum If the units of an Auto spectrum are (g^2) , the units of its corresponding **PSD** are (g^2 / Hz)

ENERGY SPECTRAL DENSITY (ESD)

An ESD is a PSD multiplied by the time length (\mathbf{T}) of the time waveform used to create the spectrum

If the units of a PSD are (g^2 / Hz) , the units of its corresponding ESD are $(g^2 - sec / Hz)$

ESDs are used mostly to characterize transient signals

TIME DOMAIN WINDOWS

The FFT algorithm assumes that the time waveform to be transformed is *periodic in its sampling window*.

A signal is *periodic in its sampling window* if it satisfies one of the following criteria,

- 1. An *integer number of cycles* of the signal are contained within its sampling window
- 2. The signal has *no discontinuity* between its beginning & end in its sampling window
- 3. The signal is *completely contained* within its sampling window

NON-PERIODIC SIGNAL

Many signals are *non- periodic* in their sampling window.

A *purely* random signal is is *non-periodic* (*never completely contained*) within a finite length sampling window.

WHAT IS LEAKAGE?

If a time waveform is *non-periodic in its sampling window*, a *smearing of its spectrum* (called *leakage*) will occur when it is transformed to the frequency domain as a **DFT**.

Leakage *distorts* the spectrum, especially around resonance peaks.

Leakage *spreads* the spectrum surrounding resonance peaks, which is detrimental for modal parameter estimation (curve fitting).

Leakage *is reduced* by multiplying the sampled time waveform by a *special weighting function* (called a **time domain window**), *before* the **FFT** is applied to the time waveform.

HANNING WINDOW FOR BROADBAND SIGNALS

If a time waveform is *non-periodic in its sampling window*, leakage *cannot be eliminated*, but it *can be reduced*.

A Hanning window *reduces the leakage* in the spectrum of a *broad band signal* such as a random signal.

Hanning Window.

FLAT TOP WINDOW FOR NARROW BAND SIGNALS

A Flat Top window makes the *magnitudes of peaks more accurate* in the **DFT** of a *narrow band signal* such as a sinusoidal signal.

A Flat Top window also *reduces leakage* in the spectrum of a *narrow band signal*.

A Flat Top window also *makes the peaks wider* in the spectrum of a *narrow band signal*.

Flat Top Window.

App Note 38

EXPONENTIAL WINDOW FOR TRANSIENT SIGNALS

A *decreasing* Exponential window should be applied to transient (or impulse response) signals that *do not decay completely* within their sampling window

A *decreasing* Exponential window *artificially damps* the signal toward zero before the end of its sampling window, thus making it *nearly periodic in its sampling window*.

An Exponential window adds a fixed amount of damping to all the decay waveforms in an impulse response.

Following curve fitting in MEscope, the artificial damping added by an Exponential window *is subtracted from the damping estimates* of all modes.

Exponential Window.

RECTANGULAR WINDOW FOR PERIODIC SIGNALS

A Rectangular window is used on a signal that is *periodic (or nearly periodic)*, in its sampling window

All values of a rectangular window \rightarrow "1"

This window is also called a **Box Car** window or **No** window

Rectangular Window.

SPECTRUM AVERAGING

Spectrum averaging is used for two important reasons,

- 1. To remove extraneous random noise from the DFT of a signal
- 2. To remove randomly excited non-linearities, which appear as random noise in the DFT

The time waveform **Block Size (number of samples)** is twice the **Block Size (number of samples)** in its corresponding DFT

Time Waveform Block Size = 2 DFT Block Size.

The following steps are carried out during spectrum averaging by the **Transform** | **Spectra** command in the Data Block window.

- 1. Each time waveform is divided into several smaller sampling windows
- 2. Each sampling window is *windowed* (*multiplied by a time domain window*) to reduce leakage in its spectral estimate
- 3. Each windowed time waveform is transformed into its Digital Fourier Transform (DFT) using the FFT
- 4. An Auto spectrum estimate is calculated from *each* DFT
- 5. Multiple Auto spectrum estimates are *averaged* together to yield a single Auto spectrum for each **M**# in the original Data Block

Spectrum Averaging Calculation Loop

NUMBER OF AVERAGES

Depending on the Block Size of the time waveforms in a time domain Data Block, two cases can occur,

DFT Block Size → 1/2 (Time Waveform Block Size)

In this case, only one spectrum estimate can be calculated using *all the time waveform samples*.

DFT Block Size \rightarrow less than 1/2 (Time Waveform Block Size)

In this case, a large time domain waveform can be divided into many smaller sampling windows, and spectrum averaging can be performed.

OVERLAP PROCESSING

Overlap processing divides each time waveform into a series of smaller *overlapping sampling windows*.

The percentage of overlap of the sampling windows depends on three parameters,

- 1. The **time waveform Block Size** (the total number of time waveform samples)
- 2. The spectrum Block Size
- 3. The Number of Spectrum Averages

Increasing the Number of Spectrum Averages *increases the percentage* of overlap processing

50 % Overlap means that *half of the time waveform samples are used over again* in each successive sampling window

0% Overlap means that *unique time waveform samples* are used for each new sampling window

LINEAR (OR STABLE) AVERAGING

Linear averaging is the same as *summing together* all the spectral estimates and *dividing by the number of averages*.

A *stable averaging* formula is used for linear spectrum averaging. Each stable average is calculated using a weighted sum of the current spectrum estimate and the preceding stable average.

The Nth stable average is calculated with the following formula,

Stable Average (N) = (1/N) Spectrum (N) + (1 - (1/N)) Stable Average(N-1)

PEAK HOLD AVERAGING

Peak Hold averaging retains the maximum value at each sample from all spectral estimates.

The Ith sample of the Nth average is determined with the formula,

Peak Average (N,I) =Maximum (Spectrum (I), Peak Average(N-1,I))

STEP 1 - FOURIER SPECTRUM OF PERIODIC SINE WAVES

• Press Hotkey 1 Fourier Spectrum of Periodic Sine Waves

To illustrate the calculation of a Fourier spectrum, a Data Block file with a time waveform containing *three periodic sine waves* was created using the **File** | **New** | **Data Block** command. The waveform was saved in **BLK: 20 30 50 Hz Sine Waves**.

When Hotkey 1 is *pressed*, two Data Block windows will open. The Data Block **BLK: 20 30 50 Hz Sine Waves** is displayed *on the left* and contains a time waveform with **20,000 samples** of sinusoidal data in it.

BLK: 20 30 50 Hz Sine Waves contains data for a T **→** 50 seconds, but *only* 0 to 1 seconds of data is displayed

The Data Block **BLK: Fourier Spectrum (DFT)** is displayed *on the right* and contains the Fourier spectrum (**DFT**) of the time waveform in **BLK: 20 30 50 Hz Sine Waves**. The **DFT** has three peaks at **20, 30 & 50 Hz** with **magnitude** = 1 and **phase** = $\mathbf{0}$.

BLK: Fourier Spectrum (DFT) has a frequency span → 0 to 200 Hz but *only* 0 to 60 Hz is displayed

The *Peak cursor* in the Fourier spectrum shows a magnitude = 1g for the 30 Hz peak

The frequencies of the three sine waves (**20**, **30**, **50**) Hz divide evenly into **200** Hz, hence they are periodic in the 20,000 sample time domain window and there is no leakage in their spectrum

Fourier Spectrum (DFT) of a Periodic Signal Containing Three Sine Waves.

ONE-SIDED VERSUS TWO-SIDED FFT

The Fourier Transform is defined as an integral over all frequencies, positive & negative.

The **DFT** is also defined over *all frequencies, positive & negative*.

The spectrum for the negative frequencies has the same information in it as the spectrum for the positive frequencies.

Therefore, only the DFT for positive frequencies is displayed in MEscope.

A **One-Sided FFT** assigns *all the energy* from the time waveform to the *positive frequencies* of its **DFT** (the part that is displayed)

A Two-Sided **FFT** assigns *half of the energy* to the *positive frequencies* and half of the energy to the *negative frequencies* of its **DFT**

DFT values from a One-Sided FFT are twice as large as the DFT values from the Two-Sided FFT

STEP 2 - SPECTRUM AVERAGING USING A FLAT TOP WINDOW

• Press Hotkey 2 Auto Spectrum with Flat Top

When Hotkey 2 is *pressed*, two Data Block windows will open. The Data Block **BLK: 20 30 50 Hz Sine Waves** is displayed *on the left* and contains a time waveform with **20,000 samples** of sinusoidal data in it.

BLK: 20 30 50 Hz Sine Waves contains data for a T **→** 50 seconds, but *only* 0 to 1 seconds of data is displayed

The Data Block **BLK:** Auto Spectrum is displayed *on the right* contain the Auto spectrum which has three peaks at 20, 30 & 50 Hz with magnitude = 1 & phase = 0.

BLK: Auto Spectrum has a frequency span → 0 to 200 Hz but *only* 0 to 60 Hz is displayed

Auto Spectrum of a Periodic Signal Containing Three Sine Waves With a Flat Top Window Applied.

The *Peak cursor* value in the Auto spectrum shows the magnitude of 1 g*g for the 30 Hz sine wave.

OVERLAP PROCESSING

Now the calculations done when Hotkey 2 was pressed will be done manually

• Right click in Data Block BLK: 20 30 50 Hz Sine Waves and execute Transform | Spectra

The following dialog box will open.

Transform Spectra	
Measurement Type	Spectrum Averaging
Auto spectrum \checkmark	Spectrum Block Size 1000 🜩
Spectrum Averaging	Number of Averages 11 🚖
 Linear 	Percent Overlap 10 %
O Peak Hold	Time Domain Window
O Spectrogram	Flat Top 🗸 🗸
Calculate	Cancel

Transform | Spectra Dialog Box.

• Verify that Spectrum Block Size → 1000, Number of Averages → 11, and Percent Overlap → 10%

This means that to calculate **11 Auto spectra** and average them together, *10 percent* of the time waveform samples will be used over again in *each successive* sampling window.

TIME DOMAIN WINDOW

When spectrum averaging is used, data that is *periodic for all samples* in a time waveform window *might not be periodic in each* sampling window.

Therefore, to preserve the magnitudes of the three sine waves in the Auto Spectrum, a **Flat Top** window will be applied to each sampling window before the **FFT** is used to calculate its **DFT**.

Time Domain Window → Flat Top is also listed in the dialog box above

Auto Spectrum With a Flat Top Window Applied and 11 Spectrum Averages & Overlap Processing.

- Press Calculate in the Transform | Spectra dialog box
- Save the Auto Spectrum in BLK: Auto Spectrum with Flat Top

Because the Flat Top window was used, the three sine wave peaks appear at their respective frequencies (20, 30, 50) Hz, with magnitudes \rightarrow "1 g*g" in the Auto spectrum. However, compared to the Fourier spectrum, the sine wave peaks *now have "width" to them*.

A Flat Top window preserves peak magnitudes but increases peak widths.

TWO-SIDED FFT

- Double click on the FFT column in the M#s spreadsheet in Data Block BLK: Auto Spectrum with Flat Top
- In the dialog box that opens, choose No, *click* on OK
- Choose Yes in the next dialog box to re-scale the data

FFT	
Use a one-sided FFT?	
⊖ Yes	No
ОК	Cancel

The magnitude of each spectrum peak in the Auto spectrum is now **0.25** g*g because half of the sine wave energy has been assigned to the *negative frequency peaks*.

STEP 3 - PSD USING A FLAT TOP WINDOW

• Press Hotkey 3 PSD with Flat Top

When **Hotkey 3** is *pressed*, the same sinusoidal signal that was used to calculate the Auto spectrum will now be used to calculate a **PSD** and add it to the **BLK: Auto Spectrum with Flat Top** Data Block.

Two Data Block windows will open. The Data Block *on the left* shows the same time waveform with **20,000 samples** of sinusoidal time waveform data in it.

The Data Block *on the right* shows both the **Auto spectrum** & **PSD** of the waveform on the left, with three peaks at (20, 30, 50) Hz.

Auto spectrum and **PSD** of the Sinusoidal Waveform.

The **Peak cursor** in the Auto spectrum shows a magnitude of **1** g*g for the **30** Hz sine wave

The units of the **PSD** are (g*g/Hz) which is a *power* (mean squared) quantity.

In the Window Correction column of BLK: Auto Spectrum with Flat Top, choose Narrow for M# 2

Answer Yes in the dialog that opens to rescale the PSD

The Peak cursor in the PDS now shows a magnitude of 5 g*g/Hz for the 30 Hz sine wave

The magnitudes of the three sine waves are 1 g of the original time waveform. Therefore, the three Auto spectrum peaks have magnitude \rightarrow 1 g*g.

A **PSD** is an Auto spectrum "*normalized by*" (divided by) the **frequency resolution** (Δf) of the spectrum.

• Execute File | Properties in the BLK: Auto Spectrum with Flat Top window

Frequency Resolution → 0.2 Hz

Therefore, the **PSD** peaks should be 5 (g*g/Hz), which is confirmed by the cursor value on the **PSD** (M#2) in the Data Block window shown above.

STEP 4 - SPECTRUM AVERAGING USING A RECTANGULAR WINDOW

• Press Hotkey 4 Auto Spectrum with Rectangular

When **Hotkey 4** is *pressed*, the same sinusoidal signal that was used to calculate the Auto spectrum will now be used to calculate a **PSD** and add it to the **BLK: Auto Spectrum with Flat Top** Data Block.

Two Data Block windows will open. The Data Block *on the left* shows the same time waveform with **20,000 samples** of sinusoidal time waveform data in it.

The Data Block *on the right* again shows both the Auto spectrum & PSD of the time waveform *on the left*, with three peaks at (20, 30, 50) Hz.

Auto spectrum & **PSD** of a Periodic Signal Using a Rectangular Window.

The narrow peaks at the three frequencies at (20, 30, 50) Hz in both the Auto spectrum & PSD verify that the time waveform remained *periodic in each* sampling window when 11 averages were calculated with 10% overlap processing.

CONCLUSION

In Steps 2 & 3, a Flat Top window was applied to the time waveforms in each sampling window to obtain *accurate magnitudes* in each spectral estimate. An Auto spectrum and PSD were calculated from the time waveform in BLK: 20 30 50 Hz Sine Waves using the following parameters

Spectrum Block Size → 1000 samples Number of Averages → 11 Overlap processing → 10% Time Domain Window → Flat Top

The time waveform in BLK: 20 30 50 Hz Sine Waves contains 20000 samples over a time of T → 50 seconds.

With a Spectrum Block Size \rightarrow 1000 samples, each time domain *sampling window contains 2000 samples* over a time of T \rightarrow 5 seconds.

With these sampling parameters, each sinusoidal waveform *is still periodic in its* sampling window.

- The three sine waves *complete exactly* 100 (20 Hz), 150 (30 Hz), 250 (50 Hz) cycles in T → 5 seconds
- With overlap processing, the next sampling window starts after 10 (20 Hz), 15 (30 Hz), 25 (50 Hz) cycles of each sine wave
- No leakage will occur in the calculated DFT, and therefore the Auto spectrum & PSD have no leakage

Because each sinusoidal waveform *is periodic in its* sampling window a **Rectangular** window can also be used instead of a **Flat Top** window.

STEP 5 - REVIEW STEPS

To review the steps of this App Note,

• Press Hotkey 5 Review Steps