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    MEscope Application Note 16 

Integration & Differentiation of FRFs and Mode Shapes 

The steps in this Application Note can be carried out using any MEscope package that includes the VES-3600 Advanced 

Signal Processing option. Without this option, you can still carry out the steps in this App Note using the AppNote16 project 

file. These steps might also require MEscope software with a more recent release date. 

APP NOTE 16 PROJECT FILE 

• To retrieve the Project file for this App Note, click here to download AppNote16.zip 

This Project file contains numbered Hotkeys & Scripts for carrying out the steps of this App Note. 

• Hold down the Ctrl key and click on a Hotkey to display its Script window 

INTRODUCTION 

Depending on the units of the sensors used to acquire real-world vibration data, both integration & differentiation can be 

used to convert the data to different units. Normally, integration & differentiation are only performed on time domain 

waveforms, but it will be shown in this App Note how integration & differentiation can also be performed on FRFs and 

mode shapes, specifically Residue mode shapes. 

Integration & differentiation can be performed on time or frequency domain waveforms in any Data Block in MEscope. In 

addition, integration & differentiation can be performed on Residue mode shapes in any Shape Table in MEscope. 

In this App Note, the formulas for FRFs in terms of modal parameters are first developed.  These formulas are developed 

for the SDOF mass-spring-damper in the figure below.  The formulas for an FRF in terms of modal parameters are also 

used for FRF-based modal parameter estimation (or curve fitting) in MEscope.  The formulas for an IRF in terms of modal 

parameters give the clearest explanation of the role that each modal parameter plays in the vibration of a structure. 

 
SDOF Mass-Spring-Damper. 

http://appnotes.vibetech.com/ZIPs/AppNote16.zip
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The modal properties of real-world structures are analyzed using multi-degree-of-freedom (MDOF) dynamic models.  In 

this App Note, the single degree-of-freedom (SDOF) mass-spring-damper model shown in the figure above will be used.  

The dynamics of real-world MDOF structures are better understood by analyzing the dynamics of this SDOF mass-spring-

damper structure. 

BACKGROUND MATH 

The dynamic behavior of the SDOF mass-spring-damper in the figure above is represented by the single differential equa-

tion, equation (1) shown below.  The dynamic behavior of an MDOF structure is represented by multiple equations of the 

same form as the equation below, but the mass, stiffness, and damping terms are replaced with a mass matrix multiplied by 

a vector of accelerations, a damping matrix multiplied by a vector of velocities, and a stiffness matrix multiplied by a vec-

tor of displacements. 

The time domain equation of motion for the SDOF mass-spring-damper is represented by Newton’s Second Law, 

𝐌𝐱̈(t) + C𝐱̇(𝐭) + 𝐊𝐱(𝐭) = 𝐟(𝐭) 

M= mass value 

C = damping coefficient 

K = spring stiffness 

𝐱̈(t) = acceleration 

𝐱̇(𝐭) = velocity 

𝐱(𝐭) = displacement 

𝐟(𝐭) = excitation force 

LAPLACE TRANSFORM 

By taking Laplace transforms of the terms in the equation above and setting initial conditions to zero, an equivalent fre-

quency domain equation of motion results, 

)s(F)s(X]KsCsM[
2 =++  

X(s) = Laplace transform of the displacement 

F(s) = Laplace transform of the force 

=+= js Laplace variable (complex frequency 

TRANSFER FUNCTION 

The equation above can be rewritten by dividing both sides by the coefficients of the left-hand side. 
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The new coefficient on the right-hand side is called a Transfer Function. 
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A Transfer Function is complex valued, and therefore has real & imaginary parts, or equivalently magnitude & phase.  

The two parts of the Transfer Function can be plotted on the complex Laplace plane (the s-plane), as shown in the figure 

below. 
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Transfer Function on the s-Plane. 

POLES OF THE TRANSFER FUNCTION 

The magnitude of the Transfer Function above has two peaks.  These peaks are where the value of the Transfer Function 

goes to infinity.  The real and imaginary parts also show the same two peaks. 

The Transfer Function above has a value of infinity for values on the s-Plane where its denominator is zero.  As the s vari-

able approaches infinity, the Transfer Function approaches zero. 

The denominator of the Transfer Function is a second order polynomial in the s variable, called the characteristic polyno-

mial.  Since it is a second order polynomial, it has two roots (values of s where it will be zero). 

The roots of the characteristic polynomial are called the poles of the Transfer Function 

Poles always occur in pairs, one pole for a positive frequency and one for a negative frequency 

Poles are the locations in the s-plane where the Transfer Function has a value of infinity 

• The poles are also called eigenvalues. 

000000 jp,jp −−=+−=  
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S-PLANE NOMENCLATURE 

The real axis in the s-Plane is called the damping axis, and the imaginary axis is called the frequency axis.  The locations 

of the poles in the s-Plane have also been given some other commonly used names, as shown in the figure below. 

 
s-Plane Nomenclature. 

MODAL PARAMETERS 

The coordinates of the poles in the s-Plane are also modal parameters.  Rewriting the equation for a Transfer Function in 

terms of its pole locations, 
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FREQUENCY RESPONSE FUNCTION (FRF) 

Notice in the figure below that the Transfer Function is only plotted for half of the s-Plane.  That is, it has been only been 

plotted for negative values of damping axis (the real part of s=σ+jω).  This was done so that the values of the Transfer 

Function along the frequency axis (the imaginary part of s=σ+jω) are clearly seen. 

• The Frequency Response Function (FRF) is defined as the values of the Transfer Function only along the jω-axis 

(or the frequency axis) in the s-plane 

The FRF is merely the Transfer function evaluated along the line (s=jω) in the s-plane. 
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FRF Plotted on the jω-axis. 

The FRF for the SDOF mass-spring-damper is written by replacing the s-variable with j  in the equation above. 
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PARTIAL FRACTION EXPANSION OF AN FRF 

Using the poles of the characteristic polynomial, a partial fraction expansion can be performed on the equation for an FRF 
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0R is called the modal residue. It is the amplitude of the numerator of each resonance term when an FRF is written as a par-

tial fraction expansion. 

Comparing the equation above with the plot of the FRF in the figure above, it is clear that the FRF of the SDOF mass-

spring-damper is a summation of two resonance curves, each curve forming a peak at one of the two pole locations. 

000 jp +−=   &  
000 jp −−=  

In partial fraction expansion form, the FRF for the SDOF mass-spring-damper is fully represented by a modal frequency 

)( 0j , modal damping )( 0 , and modal residue )R( 0  

RESIDUE UNITS 

From the equation above, it is clear that, 

Residue units = (FRF units) x (radians/second) 

This is because the units of the FRF denominator are (radians/second), or 2 Hz. 

• Residues have engineering units and they also have unique values 

For the SDOF mass-spring-damper, the residue is part of a vector with two components. The second component corre-

sponds to the ground, to which the spring & damper are attached. The ground has no motion, so the second component of 

the residue vector has a value of zero. 

Residue mode shape: In MEscope, when residues are assembled into a vector, they are called a Residue mode shape 

MODE SHAPE 

One final step is to represent the FRF in terms of a mode shape instead of residues. 
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A = a scaling constant 

• The mode shape }{ 0u  of the SDOF mass-spring-damper is a vector with two components 

• The second component of }{ 0u  corresponds to the ground, where there is no motion 

• The scaling constant (A) is necessary because the components of a mode shape do not have unique values 

• Only the "shape" (one component relative to another) of a mode shape is unique.  For this reason, a mode shape is 

also called an eigenvector 

In the above equation, the FRF of the SDOF mass-spring-damper is fully represented by a pair of eigenvalues (poles) and a 

pair of eigenvectors (mode shapes). 
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In partial fraction expansion form, the FRF for the SDOF mass-spring-damper is fully represented by a modal frequency 

)j( 0 , modal damping )( 0 , and a mode shape }u{ 0  

MODE SHAPE VERSUS RESIDUE MODE SHAPE 

A Mode Shape vector is different than a Residue mode shape vector.  

The Mode Shape vector {uo} has arbitrary values and no engineering units. 

The Residue mode shape vector {Ro} has specific values and engineering units. 

For the scaling constant A=1, the Residue mode shape and the Mode Shape vector are related by the equation, 
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IMPULSE RESPONSE FUNCTION (IRF) 

An Impulse Response Function (IRF) is the Inverse FFT of an FRF. 

An IRF can also be written in terms of modal parameters, and it provides the best physical meaning of the modal parame-

ters.  Applying the Inverse FFT to the equations above gives, 
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These equations show how the IRF is expressed in terms of each modal parameter. 

The IRF is a sinusoidal function ( ))tsin( 00 +  which describes the sinusoidal oscillation of the SDOF, hence 0 is 

called modal frequency 

0  is the coefficient in the exponential term )e(
t0−  which defines the envelope of decay of the SDOF, hence 

0  is called 

the modal damping coefficient or modal damping decay constant 

In a real-world structure, the decay of each mode is caused by a combination of damping mechanisms within or about the 

structure. For the SDOF mass-spring-damper, the modal damping is caused by the viscous damper attached between the 

mass and ground. 

In a real-world structure, the viscous damping of the surrounding air is a significant damping force, hence a viscous damp-

ing model is used in Experimental Modal Analysis (EMA) to model real-world damping. 
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IRF UNITS 

In the equation above, the IRF has two terms, an exponential function 
)eRT(

t

0
0−

 and a sinusoidal function

( ))t(sin 0 +
.  The exponential decay )e(

t0−

 and sinusoidal function are dimensionless. 

Only T and R0 have units, 

Impulse Response units = (Seconds) x (Residue units) 

or, 

Impulse Response units = FRF units 

DIFFERENTIATING AN IRF 

Differentiation changes vibration data for displacement units to velocity units and from velocity units to acceleration 

units.  Differentiating the IRF with (displacement/force) units with respect to time yields, 
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Differentiating an IRF is equivalent to multiplying its modal residues by their respective poles. 
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For the SDOF mass-spring-damper, both poles have real residues ( 0R ). 

For real-world structures, each complex conjugate pair of poles has a complex conjugate pair of residues. 

An IRF with (velocity/force) units can be differentiated to yield an IRF with (acceleration/force) units. Each residue with 

(velocity/force-sec) units is multiplied by its pole to obtained a residue with (acceleration/force) units.  In summary, 

2
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The same formula applies for the conjugate residues. A conjugate residue is multiplied by its conjugate pole.  Three 

equations relating residues with (displacement/force-sec), (velocity/force-sec), and (acceleration/force-sec) units can be 

written, 
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Integration or differentiation of an IRF is equivalent to dividing or multiplying each of its modal residues by its associated 

pole. 

DIFFERENTIATING AN FRF 

Differentiation of an IRF can be written in terms of its corresponding Transfer Function using the following derivative 

formula for Laplace Transforms, 
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The derivative of the IRF is obtained by evaluating the right-hand side of the equation above along the frequency axis 

( = js ). 

Assuming 𝒉(𝟎+) = 0, differentiating an IRF is the same as multiplying its corresponding FRF by 𝐣𝛚. 

Any time waveform can be differentiated by multiplying its corresponding frequency domain function by 𝐣𝛚. 

Multiplying the FRF for the SDOF mass-spring-damper by j  
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Performing a partial fraction expansion of this FRF gives, 

0ntDisplacemeVelocity pRR =  

Differentiation or integration of an IRF is the same as multiplying or dividing its corresponding FRF by 𝐣𝛚. 

Differentiation or integration of an IRF is the same as multiplying or dividing its residues by their respective poles. 

In MEscope all time waveforms are differentiated or integrated by multiplying or dividing their corresponding frequency 

domain function by 𝐣𝛚. 

DOUBLE DIFFERENTIATING AN IRF 

Now that the relationship between differentiation & integration of an IRF and multiplying or dividing its FRF by j  has 

been established, what about double integration & differentiation of an IRF? 

Writing the formula for double differentiation of the IRF in terms of its Laplace Transform gives, 
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The second derivative of the IRF can be obtained by evaluating the equation along the frequency axis (s=jω).  The follow-

ing conclusion can be drawn, 

Double differentiation or double integration of an IRF is the same as multiplying or dividing its residues by the square of 

their poles. 

But is double differentiation or double integration of an IRF the same as multiplying or dividing its corresponding FRF 

by ( )2
j ? 

Let's check by multiplying the FRF for the SDOF mass-spring-damper by ( )2
j . 
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Performing a partial fraction expansion of this FRF gives a different result, 
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The partial fraction expansion above has an extra term in it, (1/M).  Evaluating 𝐡′(𝟎+)  gives, 
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The velocity term 𝐡′(𝟎+) at a time which is a little greater than zero (0+) is not zero 

Double differentiating or integrating an IRF is not the same as multiplying or dividing its corresponding FRF by(𝐣𝛚)𝟐 
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STEP 1 - SYNTHESIZING A (DISPLACEMENT/FORCE) FRF 

To synthesize the driving point FRF 1Z:1Z for the SDOF mass-spring-damper, 

• Press Hotkey 1 Synthesize FRF 

The FRF is synthesized and displayed next to the Shape Table with the Residue mode shape in it, SHP: Residue mode 

shape. 

 
Driving Point (Displacement/Force) FRF and Residue mode shape Table. 

An FRF, like a Transfer Function, defines the dynamic characteristics between two DOFs of a structure.  MDOF systems 

have many DOF pairs for which FRFs can be calculated, either from measured data or from modal parameters.  The mode 

shape of the SDOF mass-spring-damper has only one meaningful DOF. The other DOF is for the ground point where there 

is no motion. 

Any FRF with its Roving DOF equal to its Reference DOF is called a Driving Point FRF. 

The driving point FRF 1Z:1Z was synthesized using the Residue mode shape with DOFs 1Z:1Z in the SHP: Residue mode 

shape window. 

STEP 2 - DIFFERENTIATING TO OBTAIN A (VELOCITY/FORCE) FRF 

There are two ways to obtain a (Velocity/Force) FRF, 

1) Multiply the Residue mode shape with (displacement/force-sec) units by its pole to obtain a (velocity/force-sec) residue, 

and synthesize a new FRF using the new Residue mode shape. 

2) Multiply the (Displacement/Force) FRF by 𝐣𝛚. 

It has already been shown by the math above that both methods give the same result. 

In MEscope, method #1 is carried out by executing Tools | Differentiate followed by the Tools | Synthesize FRFs com-

mand in a Shape Table window. 

• Press Hotkey 2 Velocity/Force FRF 

Notice that the Residue mode shape in SHP: Residue mode shape now contains velocity units in its numerator. 
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(Velocity/Force) FRFs Overlaid 

Method #2 is carried out by executing Tools | Differentiate on the FRF in the BLK: Displacement/Force FRF window.  

When Hotkey 2 was pressed, the (displacement/force) FRF is added to the BLK: Velocity FRF window, and is differen-

tiated by selecting M#2 and executing Tools | Differentiate.  Then, the two M#s are overlaid. 

• Alternately click on a Select M#2 in BLK: Velocity/Force FRFs to display M#2 as shown above 

The two FRFs are exactly the same but have different colors, so the color will change from orange to blue as Select M#2 

is pressed. 

STEP 3 - (DISPLACEMENT/FORCE) VS. (VELOCITY/FORCE) FRF 

• Press Hotkey 3 Displacement vs. Velocity 

When Hotkey 3 is pressed, the (Displacement/Force) FRF is overlaid with the (Velocity/Force) FRF. 

 
(Displacement/Force) vs. (Velocity/Force) FRF 

Multiplying the (Displacement/Force) FRF by 𝐣𝛚 caused the phase to change by 90 degrees and the magnitude to be zero 

at DC (zero frequency). 
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STEP 4 - DIFFERENTIATING TO OBTAIN AN (ACCELERATION/FORCE) FRF 

There are three ways to obtain an (Acceleration/Force) FRF, 

1) Multiply the Residue mode shape with (velocity/force-sec) units by its pole and synthesize a new FRF using the Residue 

mode shape with (acceleration/force-sec) units. 

2) Multiply a (Displacement/Force) FRF by (𝐣𝛚)𝟐 

3) Multiply a (Velocity/Force) FRF by 𝐣𝛚 

We have already concluded from the math that these three methods will not yield the same results because there is an ex-

tra term involved. 

• Press Hotkey 4 Acceleration/Force FRF 

Notice that the Residue mode shape shown below contains acceleration units in its numerator. 

 
(Acceleration/Force) FRFs Overlaid. 

When Hotkey 4 was pressed, the (Acceleration/Force) FRF in red was synthesized from the Residue mode shape with 

acceleration units in the numerator. The (Acceleration/Force) FRF in orange was created by multiplying a (Veloci-

ty/Force) FRF by j . 

The phases of the two (Acceleration/Force) FRFs are similar, but their magnitudes are different. 

The 1/M line in M#2, the extra term in its partial fraction expansion, is clearly visible. 

  



App Note 16 3/10/21 

Page 14 of 14 

STEP 5 – REVIEW STEPS 

To review all the steps of this App Note, 

• Press Hotkey 5 Review Steps 

CONCLUSIONS 

The following conclusions can be drawn from the steps of this App Note, 

Multiplying or dividing an FRF by 𝐣𝛚 is the same as differentiating or integrating its IRF. 

Multiplying or dividing an FRF by (𝐣𝛚)𝟐 is not the same as double differentiating or integrating its IRF. 

Multiplying or dividing Residue mode shapes by their Pole is the same as differentiating or integrating the IRF correspond-

ing to an FRF that is synthesized from the residues. 

Multiplying or dividing Residue mode shapes by their Pole squared is the same as double differentiating or integrating the 

IRF corresponding to an FRF that is synthesized from the residues. 

Any time waveform can be differentiated or integrated by multiplying or dividing its corresponding frequency domain func-

tion by 𝐣𝛚. 


