# **VIBRANT** MEscope Application Note 14

# **Multi-Reference Curve Fitting to Find Repeated Roots**

The steps in this Application Note can be carried out using any MEscope package that includes the **VES-3600 Advanced Signal Processing & VES-4600 Advanced Modal Analysis** options. Without these options, you can still carry out the steps in this App Note using the AppNote14 project file. These steps might also require MEscope software with a *more recent release date*.

#### **APP NOTE 14 PROJECT FILE**

• To retrieve the Project for this App Note, <u>click here</u> to download AppNote14.zip

This Project file contains numbered Hotkeys & Scripts for carrying out the steps of this App Note.

• Hold down the Ctrl key and click on a Hotkey to display its Script window

#### INTRODUCTION

In this note, the **VES-4600 Advanced Modal Analysis** option is used to curve fit a set of multiple-reference FRFs to estimate the modal parameters of the repeated roots of the circular plate structure shown below.

• **Repeated Root:** A structure has a repeated root if *two or more of its modes* have the *same frequency but different mode shapes* 

A finite element analysis (FEA) model of a circular disk shown below was created using the VES-8000 FEA option in MEscope. The natural frequencies & mode shapes were found as an eigen-solution to the differential equations of motion for the disk obtained from the FEA model. An eigen-solution consists of the *natural frequency* (called an *eigenvalue*) and the *mode shape* (called an *eigenvector*) of each mode in the solution.

Damping was not modeled in the **FEA** model so the **FEA** mode shapes had no modal damping.

Mode shapes from an FEA model without damping are called normal modes.



FEA Mode Shapes of a Pair of Repeated Roots

# **STEP 1 - MODE SHAPES OF REPEATED ROOTS**

#### • Press Hotkey 1 FEA Mode Shapes

The figure above is a display of the mode shapes of a pair of repeated roots of the circular disk. Notice that the two modes have the same frequency, but **their node lines** show that their **mode shapes are different**. The mode shapes are similar-looking **but are rotated 45 degrees** from one another.

## **MODAL ASSURANCE CRITERION (MAC)**

In the figure above, MAC = 0 between these two shapes. This means that they are linearly independent of one another, even though the look similar to one another. Another way of saying it is that the *mode shapes are orthogonal* to one another

- MAC measures the *co-linearity* (or *linear dependence*) between two shapes
- MAC values range between 0 &1
- MAC >= 0.9 → two shapes *are nearly co-linear*, or *strongly correlated*
- MAC < 0.9 → two shapes *are different*

#### **MULTI-REFERENCE FRF SYNTHESIS**

The **FEA** model has six pairs of repeated roots, indicated by the pairs of identical frequencies in the Shape Table **SHP: FEA Modes** below. There is also one *non-repeated root* at **773 Hz**. A set of multiple reference FRFs will be synthesized starting with the mode shapes in the Shape Table **SHP: FEA Modes**.

- Modal damping *is necessary* to synthesize FRFs
- FEA mode shapes typically *have no modal damping* because damping is not modeled in the FEA model
- To synthesize FRFs, each FEA mode shape was given 1% critical damping

The synthesized multi-reference FRFs are curve fit using a multi-reference curve fitting method. Finally, the mode shape estimates obtained from curve fitting the multi-reference FRFs are compared with the original **FEA** mode shapes.

| SHP: FEA Mode Shapes     Shapes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                             |                                                                                                                                     |                  |    |                                                                                                                                                                             |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----|--|
| Select<br>Shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Frequency<br>(or Time)                                                                                                                                                                                                                                                      | Damping                                                                                                                             | Unit             | ts | Damping<br>(%)                                                                                                                                                              |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    | ^   |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 422.2                                                                                                                                                                                                                                                                       | 4.222                                                                                                                               | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 422.2                                                                                                                                                                                                                                                                       | 4.222                                                                                                                               | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 772.8                                                                                                                                                                                                                                                                       | 7.729                                                                                                                               | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1090                                                                                                                                                                                                                                                                        | 10.9                                                                                                                                | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1090                                                                                                                                                                                                                                                                        | 10.9                                                                                                                                | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1559                                                                                                                                                                                                                                                                        | 15.59                                                                                                                               | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1559                                                                                                                                                                                                                                                                        | 15.59                                                                                                                               | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1947                                                                                                                                                                                                                                                                        | 19.47                                                                                                                               | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1947                                                                                                                                                                                                                                                                        | 19.47                                                                                                                               | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2746                                                                                                                                                                                                                                                                        | 27.47                                                                                                                               | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2746                                                                                                                                                                                                                                                                        | 27.47                                                                                                                               | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2960                                                                                                                                                                                                                                                                        | 29.6                                                                                                                                | Hz               | ~  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2960                                                                                                                                                                                                                                                                        | 20.6                                                                                                                                | Hz               | V  | 1                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2500                                                                                                                                                                                                                                                                        | 23.0                                                                                                                                | 114              |    |                                                                                                                                                                             |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| M#s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2500                                                                                                                                                                                                                                                                        | 29.0                                                                                                                                | 112              |    |                                                                                                                                                                             |                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                       |                                                                                    |     |  |
| M#s<br>Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DOEs                                                                                                                                                                                                                                                                        | Units                                                                                                                               | 112              |    | Measureme                                                                                                                                                                   | nt                                                                                                       | Shape                                                                                                                                                                                                                                                    | 1                                                                                 | Shape                                                                                                                                                                                                                                                                         | 2                                                                                | Shape                                                                                                                                                                                                                 | 3                                                                                  | 1   |  |
| M#s<br>Select<br>M#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOFs                                                                                                                                                                                                                                                                        | Units                                                                                                                               |                  |    | Measureme<br>Type                                                                                                                                                           | nt                                                                                                       | Shape<br>Magnitude                                                                                                                                                                                                                                       | 1<br>Phase                                                                        | Shape<br>Magnitude                                                                                                                                                                                                                                                            | 2<br>Phase                                                                       | Shape<br>Magnitude                                                                                                                                                                                                    | 3<br>Phase                                                                         | 1.0 |  |
| M#S<br>Select<br>M#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : DOFs                                                                                                                                                                                                                                                                      | Units<br>in/lbf-sec                                                                                                                 | · · 2            | UN | Measureme<br>Type<br>1M Mode Sha                                                                                                                                            | nt<br>spe v                                                                                              | Shape<br>Magnitude<br>6.437E-15                                                                                                                                                                                                                          | 1<br>Phase<br>180                                                                 | Shape<br>Magnitude<br>5.49E-16                                                                                                                                                                                                                                                | 2<br>Phase<br>180                                                                | Shape<br>Magnitude<br>2.064E-16                                                                                                                                                                                       | 3<br>Phase<br>0                                                                    |     |  |
| M#s<br>Select<br>M#<br>M#1<br>M#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DOFs<br>1 1X<br>2 1Y                                                                                                                                                                                                                                                        | Units<br>in/lbf-sec<br>in/lbf-sec                                                                                                   | ~                |    | Measureme<br>Type<br>1M Mode Sha<br>1M Mode Sha                                                                                                                             | ent<br>ape v<br>ape v                                                                                    | Shape<br>Magnitude<br>6.437E-15<br>2.345E-14                                                                                                                                                                                                             | 1<br>Phase<br>180<br>0                                                            | Shape<br>Magnitude<br>5.49E-16<br>2.437E-16                                                                                                                                                                                                                                   | 2<br>Phase<br>180<br>180                                                         | Shape<br>Magnitude<br>2.064E-16<br>1.208E-15                                                                                                                                                                          | 3<br>Phase<br>0<br>180                                                             |     |  |
| M#s<br>Select<br>M#<br>M#2<br>M#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 DOFs<br>1 1X<br>2 1Y<br>3 1Z                                                                                                                                                                                                                                              | Units<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec                                                                                     | ~<br>~<br>~      |    | Measureme<br>Type<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha                                                                                                              | ape v<br>ape v                                                                                           | Shape<br>Magnitude<br>6.437E-15<br>2.345E-14<br>1.33                                                                                                                                                                                                     | 1<br>Phase<br>180<br>0<br>180                                                     | Shape<br>Magnitude<br>5.49E-16<br>2.437E-16<br>4.065                                                                                                                                                                                                                          | 2<br>Phase<br>180<br>180<br>180                                                  | Shape<br>Magnitude<br>2.064E-16<br>1.208E-15<br>15.25                                                                                                                                                                 | 3<br>Phase<br>0<br>180<br>0                                                        |     |  |
| M#s<br>Select<br>M#<br>M#2<br>M#2<br>M#3<br>M#4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t DOFs<br>1 1X<br>2 1Y<br>3 1Z<br>4 2X                                                                                                                                                                                                                                      | Units<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec                                                                       | ×<br>×<br>×      |    | Measureme<br>Type<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha                                                                                               | ape v<br>ape v<br>ape v<br>ape v                                                                         | Shape<br>Magnitude<br>6.437E-15<br>2.345E-14<br>1.33<br>6.437E-15                                                                                                                                                                                        | 1<br>Phase<br>180<br>0<br>180<br>180                                              | Shape<br>Magnitude<br>5.49E-16<br>2.437E-16<br>4.065<br>5.49E-16                                                                                                                                                                                                              | 2<br>Phase<br>180<br>180<br>180<br>180                                           | Shape<br>Magnitude<br>2.064E-16<br>1.208E-15<br>15.25<br>2.064E-16                                                                                                                                                    | 3<br>Phase<br>0<br>180<br>0<br>0                                                   |     |  |
| M#s<br>Select<br>M#<br>M#<br>M#<br>M#<br>M#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t DOFs<br>1 1X<br>2 1Y<br>3 1Z<br>4 2X<br>5 2Y                                                                                                                                                                                                                              | Units<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec                                                         | ×<br>×<br>×<br>× |    | Measureme<br>Type<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha                                                                                | ape v<br>ape v<br>ape v<br>ape v<br>ape v                                                                | Shape<br>Magnitude<br>6.437E-15<br>2.345E-14<br>1.33<br>6.437E-15<br>2.426E-14                                                                                                                                                                           | 1<br>Phase<br>180<br>0<br>180<br>180<br>180<br>0                                  | Shape<br>Magnitude<br>5.49E-16<br>2.437E-16<br>4.065<br>5.49E-16<br>2.458E-16                                                                                                                                                                                                 | 2<br>Phase<br>180<br>180<br>180<br>180<br>180                                    | Shape<br>Magnitude<br>2.064E-16<br>1.208E-15<br>15.25<br>2.064E-16<br>1.326E-15                                                                                                                                       | 3<br>Phase<br>0<br>180<br>0<br>0<br>0<br>180                                       |     |  |
| M#s<br>Select<br>M#<br>M#:<br>M#:<br>M#:<br>M#:<br>M#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t DOFs<br>1 1X<br>2 1Y<br>3 1Z<br>4 2X<br>5 2Y<br>5 2Z                                                                                                                                                                                                                      | Units<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec                                           |                  |    | Measureme<br>Type<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha                                                                 | ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v                                              | Shape           Magnitude           6.437E-15           2.345E-14           1.33           6.437E-15           2.426E-14           2.056                                                                                                                 | 1<br>Phase<br>180<br>0<br>180<br>180<br>0<br>180<br>0<br>180                      | Shape<br>Magnitude<br>5.49E-16<br>2.437E-16<br>4.065<br>5.49E-16<br>2.458E-16<br>6.342                                                                                                                                                                                        | 2<br>Phase<br>180<br>180<br>180<br>180<br>180<br>180                             | Shape<br>Magnitude<br>2.064E-16<br>1.208E-15<br>15.25<br>2.064E-16<br>1.326E-15<br>8.264                                                                                                                              | 3<br>Phase<br>0<br>180<br>0<br>0<br>0<br>180<br>0<br>0                             |     |  |
| M#s<br>Select<br>M#<br>M#:<br>M#:<br>M#:<br>M#:<br>M#:<br>M#:<br>M#:<br>M#:<br>M#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t DOFs<br>1 1X<br>2 1Y<br>3 1Z<br>4 2X<br>5 2Y<br>6 2Z<br>7 3X                                                                                                                                                                                                              | Units<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec                             |                  |    | Measureme<br>Type<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha<br>1M Mode Sha                                                  | ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v                                              | Shape           Magnitude           6.437E-15           2.345E-14           1.33           6.437E-15           2.426E-14           2.056           6.437E-15                                                                                             | 1<br>Phase<br>180<br>0<br>180<br>180<br>0<br>180<br>180<br>180                    | Shape<br>Magnitude<br>5.49E-16<br>2.437E-16<br>4.065<br>5.49E-16<br>2.458E-16<br>6.342<br>5.49E-16                                                                                                                                                                            | 2<br>Phase<br>180<br>180<br>180<br>180<br>180<br>180<br>180                      | Shape<br>Magnitude<br>2.064E-16<br>1.208E-15<br>15.25<br>2.064E-16<br>1.326E-15<br>8.264<br>2.064E-16                                                                                                                 | 3<br>Phase<br>0<br>180<br>0<br>0<br>180<br>0<br>180<br>0<br>0                      |     |  |
| M#s<br>Select<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t DOFs<br>1 1X<br>2 1Y<br>3 1Z<br>4 2X<br>5 2Y<br>6 2Z<br>7 3X<br>3 3Y                                                                                                                                                                                                      | Units<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec                             |                  |    | Measureme<br>Type<br>IM Mode Sha<br>IM Mode Sha<br>IM Mode Sha<br>IM Mode Sha<br>IM Mode Sha<br>IM Mode Sha<br>IM Mode Sha                                                  | ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v                            | Shape           Magnitude           6.437E-15           2.345E-14           1.33           6.437E-15           2.426E-14           2.056           6.437E-15           2.507E-14                                                                         | 1<br>Phase<br>180<br>0<br>180<br>180<br>0<br>180<br>180<br>0<br>0                 | Shape<br>Magnitude<br>5.49E-16<br>2.437E-16<br>4.065<br>5.49E-16<br>2.458E-16<br>6.342<br>5.49E-16<br>2.479E-16                                                                                                                                                               | 2<br>Phase<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180               | Shape<br>Magnitude<br>2.064E-16<br>1.208E-15<br>15.25<br>2.064E-16<br>1.326E-15<br>8.264<br>2.064E-16<br>1.443E-15                                                                                                    | 3<br>Phase<br>0<br>180<br>0<br>180<br>0<br>180<br>0<br>180                         |     |  |
| M#s<br>Select<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>Select<br>M#<br>Select<br>M#<br>Select<br>M#<br>Select<br>Select<br>Select<br>Select<br>M#<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>Select<br>S | t DOFs<br>1 1X<br>2 1Y<br>3 1Z<br>4 2X<br>5 2Y<br>6 2Z<br>7 3X<br>3 3Y<br>9 3Z                                                                                                                                                                                              | Units<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec                             |                  |    | Measureme<br>Type<br>IM Mode Sha<br>IM Mode Sha                                   | ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v<br>ape v                   | Shape           Magnitude           6.437E-15           2.345E-14           1.33           6.437E-15           2.426E-14           2.056           6.437E-15           2.507E-14           2.893                                                         | 1<br>Phase<br>180<br>0<br>180<br>180<br>180<br>180<br>180<br>0<br>0<br>180        | Shape<br>Magnitude<br>5.49E-16<br>2.437E-16<br>4.065<br>5.49E-16<br>2.458E-16<br>6.342<br>5.49E-16<br>2.479E-16<br>8.987                                                                                                                                                      | 2<br>Phase<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180        | Shape           Magnitude           2.064E-16           1.208E-15           15.25           2.064E-16           1.326E-15           8.264           2.064E-16           1.443E-15           1.555                     | 3<br>Phase<br>0<br>180<br>0<br>180<br>0<br>180<br>0<br>180<br>0                    |     |  |
| M#s<br>Select<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t DOFs<br>1 1X<br>2 1Y<br>3 1Z<br>4 2X<br>5 2Y<br>6 2Z<br>7 3X<br>8 3Y<br>9 3Z<br>0 4X                                                                                                                                                                                      | Units<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec               |                  |    | Measureme<br>Type<br>IM Mode Sha<br>IM Mode Sha                    | ape v<br>ape v          | Shape           Magnitude           6.437E-15           2.345E-14           1.33           6.437E-15           2.426E-14           2.056           6.437E-15           2.507E-14           2.893           6.437E-15                                     | 1 Phase 180 0 180 180 180 180 180 180 180 180 1                                   | Shape<br>Magnitude<br>5.49E-16<br>2.437E-16<br>4.065<br>5.49E-16<br>2.458E-16<br>6.342<br>5.49E-16<br>2.479E-16<br>8.987<br>5.49E-16                                                                                                                                          | 2<br>Phase<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180 | Shape           Magnitude           2.064E-16           1.208E-15           15.25           2.064E-16           1.326E-15           8.264           2.064E-16           1.443E-15           1.555           2.064E-16 | 3<br>Phase<br>0<br>180<br>0<br>180<br>0<br>180<br>0<br>180<br>0<br>180<br>0<br>0   |     |  |
| M#s<br>Select<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#1<br>M#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L         DOFs           1         1X           2         1Y           3         1Z           4         2X           5         2Y           6         2Z           7         3X           8         3Y           9         3Z           0         4X           1         4Y | Units<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec               |                  |    | Measureme<br>Type<br>IM Mode She<br>IM Mode She                    | ape v<br>ape v | Shape           Magnitude           6.437E-15           2.345E-14           1.33           6.437E-15           2.426E-14           2.056           6.437E-15           2.507E-14           2.893           6.437E-15           2.588E-14                 | 1<br>Phase<br>180<br>0<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>0<br>0 | Shape           Magnitude           5.49E-16           2.437E-16           4.065           5.49E-16           2.458E-16           6.342           5.49E-16           2.479E-16           8.987           5.49E-16           2.479E-16           2.479E-16           2.549E-16 | 2<br>Phase<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180 | Shape<br>Magnitude<br>2.064E-16<br>1.208E-15<br>15.25<br>2.064E-16<br>1.326E-15<br>8.264<br>2.064E-16<br>1.555<br>2.064E-16<br>1.55E-15                                                                               | 3<br>Phase<br>0<br>180<br>0<br>0<br>180<br>0<br>180<br>0<br>180<br>0<br>0<br>180   |     |  |
| M#s<br>Select<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#<br>M#1<br>M#1<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L         DOFs           1         1X           2         1Y           3         1Z           4         2X           5         2Y           6         2Z           7         3X           8         3Y           0         4X           1         4Y           2         4Z | Units<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec<br>in/lbf-sec |                  |    | Measureme<br>Type<br>M Mode She<br>M Mode She | ape v<br>ape v | Shape           Magnitude           6.437E-15           2.345E-14           1.33           6.437E-15           2.426E-14           2.056           6.437E-15           2.507E-14           2.893           6.437E-15           2.588E-14           3.829 | 1 Phase 180 0 180 180 180 180 180 180 180 180 1                                   | Shape<br>Magnitude<br>5.49E-16<br>2.437E-16<br>4.065<br>5.49E-16<br>6.342<br>5.49E-16<br>2.479E-16<br>8.987<br>5.49E-16<br>2.5E-16<br>11.96                                                                                                                                   | 2<br>Phase<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180 | Shape<br>Magnitude<br>2.064E-16<br>1.208E-15<br>2.064E-16<br>1.326E-15<br>8.264<br>2.064E-16<br>1.434E-15<br>2.064E-16<br>1.555E<br>2.064E-16<br>1.55E-15<br>4.899                                                    | 3<br>Phase<br>0<br>180<br>0<br>180<br>0<br>180<br>0<br>180<br>0<br>0<br>180<br>180 |     |  |

FEA Mode Shapes Showing Six Pairs of Repeated Roots

The mode shapes in the Shape Table SHP: FEA Modes shown above have several unique properties,

- The FEA mode shapes only have Roving DOFs
- The FEA mode shapes have units of (in/ bf-sec). Their response units are displacement units
- The FEA mode shapes have Measurement Type = UMM Mode Shape indicating their scaling. Unit Modal Mass (UMM) scaling preserves the structural dynamics
- The *dominant direction of motion* of the **FEA** mode shapes is the **Z-direction**
- The phases of the **FEA** mode shapes are *0 or 180 degrees*

Mode shapes with 0 or 180 degree phases are called normal mode shapes.

In Step 3, a set of multi-reference FRFs will be synthesized from the mode shapes in Shape Table SHP: FEA Mode Shapes shown above. To be used for FRF synthesis, the FEA mode shapes must be converted from UMM mode shapes to Residue mode shapes that have Roving & Reference DOFs.

Three suitable DOFs (5Z, 15Z, 25Z) were chosen as Reference DOFs for synthesizing the FRFs. The UMM mode shapes are converted to Residue mode shapes by executing Tools | Scaling | UMM to Residue Shapes in the SHP: FEA Modes window.



FEA Model Showing Reference DOF

# DIFFERENTIATING THE RESIDUE MODE SHAPES

Since the units of the **UMM** mode *s*hapes are (**displacement/force-seconds**), after the Residue mode *s*hapes have been created, they will be *double differentiated* by executing **Tools** | **Differentiate** *twice* in the **SHP: Residues 5Z 15Z 25Z** window. This converts the Residue mode Shapes to (acceleration/force-seconds) units, which are then used to synthesize FRFs with (acceleration/force) units.

# **STEP 2 - CONVERTING UMM TO RESIDUE MODE SHAPES**

# • Press Hotkey 2 Residue Mode Shapes

After the **FEA** mode shapes are converted to Residue mode shapes the two Shape Tables, **SHP: FEA Modes** and **SHP: Residues 5Z 15Z 25Z** are display, as shown below.

• Scroll through the **M**#s in **SHP: Residues 5Z 15Z 25Z** 

#### www.vibetech.com

| *SHP: FEA Mode Shapes |                                                            |            |        |                |        |           |       |           |       |           | 🕐 "SHP: Residue Mode Shapes 52 152 252 |           |       |          |             |                   |         |           |         |                  |         |           |       |           |       |           |       |           |       |        |
|-----------------------|------------------------------------------------------------|------------|--------|----------------|--------|-----------|-------|-----------|-------|-----------|----------------------------------------|-----------|-------|----------|-------------|-------------------|---------|-----------|---------|------------------|---------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|--------|
| Shapes                |                                                            |            |        |                |        |           |       |           |       |           | Shapes                                 |           |       |          |             |                   |         |           |         |                  |         |           |       |           |       |           |       |           |       |        |
| STHP: FE              | A Mode Sh                                                  | apes .     | (Larke | Damping        |        |           |       |           |       |           |                                        |           |       |          | Select      | Frequen           | cy o    | and an    | 11-2-   | Damping          |         |           |       |           |       |           |       |           |       |        |
| Shape                 | (or Time)                                                  | Damping    | Units  | (%)            |        |           |       |           |       |           |                                        |           |       |          | Shape       | (or Tim           | e)   U  | amping    | Units   | (%)              |         |           |       |           |       |           |       |           |       |        |
| 1                     | 422.2                                                      | 4.222      | Hz     | × 1            |        |           |       |           |       |           |                                        |           |       |          |             |                   |         | 4.222     | Hz      | × 1              |         |           |       |           |       |           |       |           |       |        |
| 2                     | 422.2                                                      | 4.222      | Hz     | ✓ 1            |        |           |       |           |       |           |                                        |           |       |          |             |                   |         | 4.222     | Hz      | ✓ 1              |         |           |       |           |       |           |       |           |       |        |
| 3                     | 772.8                                                      | 7.729      | Hz     | × 1            |        |           |       |           |       |           |                                        |           |       |          |             |                   |         | 7.729     | Hz      | × 1              |         |           |       |           |       |           |       |           |       |        |
| 4                     | 1090                                                       | 10.9       | Hz     | × 1            |        |           |       |           |       |           |                                        |           |       |          |             |                   |         | 10.9      | Hz      | × 1              |         |           |       |           |       |           |       |           |       |        |
| 5                     | 1090                                                       | 10.9       | Hz     | × 1            |        |           |       |           |       |           |                                        |           |       |          | 5           | 1090              |         | 10.9      | Hz      | × 1              |         |           |       |           |       |           |       |           |       |        |
| 6                     | 1559                                                       | 15.59      | Hz     | ✓ 1            |        |           |       |           |       |           |                                        |           |       |          |             |                   |         | 15.59     | Hz      | ✓ 1              |         |           |       |           |       |           |       |           |       |        |
| 7                     | 1559                                                       | 15.59      | Hz     | × 1            |        |           |       |           |       |           |                                        |           |       |          |             |                   |         | 15.59     | Hz      | ✓ 1              |         |           |       |           |       |           |       |           |       |        |
| 8                     | 1947                                                       | 19.47      | Hz     | ~ 1            |        |           |       |           |       |           |                                        |           |       |          |             |                   |         | 19.47     | Hz      | ✓ 1              |         |           |       |           |       |           |       |           |       |        |
| 9                     | 1947                                                       | 19.47      | Hz     | × 1            |        |           |       |           |       |           |                                        |           |       |          |             |                   |         | 19.47     | Hz      | ✓ 1              |         |           |       |           |       |           |       |           |       |        |
| 10                    | 2746                                                       | 27.47      | Hz     | ✓ 1            |        |           |       |           |       |           |                                        |           |       | 10       | 2746        |                   | 27.47   | Hz        | ~ 1     |                  |         |           |       |           |       |           |       |           |       |        |
| 11                    | 2746                                                       | 27.47      | Hz     | × 1            |        |           |       |           |       |           |                                        |           |       |          | 11          | 2746              |         | 27.47     | Hz      | v 1              |         |           |       |           |       |           |       |           |       |        |
| 12                    | 2960                                                       | 29.6       | Hz     | × 1            |        |           |       |           |       |           |                                        |           |       |          | 12          | 2960              |         | 29.6      | Hz      | ✓ 1              |         |           |       |           |       |           |       |           |       |        |
| 13                    | 2960                                                       | 29.6       | Hz     | ✓ 1            |        |           |       |           |       |           |                                        |           |       |          |             | 2960              |         | 29.6      | Hz      | ✓ 1              |         |           |       |           |       |           |       |           |       |        |
|                       |                                                            |            |        |                |        |           |       |           |       |           |                                        |           |       |          |             |                   |         |           |         |                  |         |           |       |           |       |           |       |           |       |        |
| M#s                   | M#s                                                        |            |        |                |        |           |       |           |       |           |                                        | _         | M#s   |          |             |                   |         |           |         |                  |         |           |       |           |       |           |       |           |       |        |
| Select                | Calast Manufacture Shape 1 Shape 2 Shape 3 Shape 4 Shape 1 |            |        |                |        |           |       |           | Sha 👝 | Selec     | t                                      |           |       |          | Measurement |                   | Shape 1 |           | Shape 2 |                  | Shape 3 |           | Shape | 4         |       |           |       |           |       |        |
| M≠                    | DOFs                                                       | Units      |        | Туре           |        | Magnitude | Phase | Magnitude | Phase | Magnitude | Phase                                  | Magnitude | Phase | Magnitud | M#          |                   | OFs     | Units     |         | Туре             |         | Magnitude | Phase | Magnitude | Phase | Magnitude | Phase | Magnitude | Phase | Magni  |
| M#1                   | 1X                                                         | in/lbf-sec | ~      | UMM Mode Shape | ~      | 6.437E-15 | 180   | 5.49E-16  | 180   | 2.064E-16 | 0                                      | 5.48E-18  | 0     | 3.716E-1 | M           | F1 1              | C:5Z    | g/lbf-sec | ~       | Residue Mode Sha | spe 🗸   | 2.342E-13 | 181.1 | 6.25E-14  | 181.1 | 3.128E-14 | 1.146 | 1.45E-15  | 1.146 | 7.7261 |
| M#2                   | 11                                                         | in/lbf-sec | ~      | UMM Mode Shape | ~      | 2.345E-14 | 0     | 2.437E-16 | 180   | 1.208E-15 | 180                                    | 2.618E-17 | 180   | 3.821E-1 | M           | #2 1              | (:5Z    | g/lbf-sec | ~       | Residue Mode Sha | ope 🗸   | 8.53E-13  | 1.146 | 2.774E-14 | 181.1 | 1.831E-13 | 181.1 | 6.927E-15 | 181.1 | 7.944  |
| M#3                   | 1Z                                                         | in/lbf-sec | ~      | UMM Mode Shape | $\sim$ | 1.33      | 180   | 4.065     | 180   | 15.25     | 0                                      | 2.235     | 180   | 1.919    | M           | #3 1              | Z:5Z    | g/lbf-sec | $\sim$  | Residue Mode Sha | spe 🗸   | 48.4      | 181.1 | 462.8     | 181.1 | 2312      | 1.146 | 591.4     | 181.1 | 399    |
| M#4                   | 2X                                                         | in/lbf-sec | ~      | UMM Mode Shape | ~      | 6.437E-15 | 180   | 5.49E-16  | 180   | 2.064E-16 | 0                                      | 5.624E-18 | 0     | 4.282E-1 | M           | #4 2              | (:5Z    | g/lbf-sec | ~       | Residue Mode Sha | ope 🗸   | 2.342E-13 | 181.1 | 6.25E-14  | 181.1 | 3.128E-14 | 1.146 | 1.488E-15 | 1.146 | 8.9031 |
| M#5                   | 2Y                                                         | in/lbf-sec | ~      | UMM Mode Shape | $\sim$ | 2.426E-14 | 0     | 2.458E-16 | 180   | 1.326E-15 | 180                                    | 2.806E-17 | 180   | 4.19E-16 | M           | ≠5 2°             | /:5Z    | g/lbf-sec | $\sim$  | Residue Mode Sha | spe 🗸   | 8.824E-13 | 1.146 | 2.798E-14 | 181.1 | 2.009E-13 | 181.1 | 7.423E-15 | 181.1 | 8.7111 |
| M#6                   | 2Z                                                         | in/lbf-sec | ~      | UMM Mode Shape | ~      | 2.056     | 180   | 6.342     | 180   | 8.264     | 0                                      | 4.088     | 180   | 3.371    | M           | F6 2              | Z:5Z    | g/lbf-sec | ~       | Residue Mode Sha | spe 🗸   | 74.79     | 181.1 | 721.9     | 181.1 | 1252      | 1.146 | 1082      | 181.1 | 700    |
| M#7                   | 3X                                                         | in/lbf-sec | ~      | UMM Mode Shape | $\sim$ | 6.437E-15 | 180   | 5.49E-16  | 180   | 2.064E-16 | 0                                      | 5.662E-18 | 0     | 4.434E-1 | M           | #7 3              | <:5Z    | g/lbf-sec | ~       | Residue Mode Sha | ope 🗸   | 2.342E-13 | 181.1 | 6.25E-14  | 181.1 | 3.128E-14 | 1.146 | 1.498E-15 | 1.146 | 9.219  |
| M#8                   | 3Y                                                         | in/lbf-sec | ~      | UMM Mode Shape | ~      | 2.507E-14 | 0     | 2.479E-16 | 180   | 1.443E-15 | 180                                    | 3.019E-17 | 180   | 4.66E-16 | M           | #8 3 <sup>°</sup> | /:5Z    | g/lbf-sec | ~       | Residue Mode Sha | spe 🗸   | 9.119E-13 | 1.146 | 2.822E-14 | 181.1 | 2.187E-13 | 181.1 | 7.989E-15 | 181.1 | 9.6891 |
| M#9                   | 3Z                                                         | in/lbf-sec | ~      | UMM Mode Shape | $\sim$ | 2.893     | 180   | 8.987     | 180   | 1.555     | 0                                      | 6.638     | 180   | 5.341    | M           | <b>#9</b> 3       | Z:5Z    | g/lbf-sec | $\sim$  | Residue Mode Sha | ope 🗸   | 105.2     | 181.1 | 1023      | 181.1 | 235.6     | 1.146 | 1756      | 181.1 | 111    |
| M#10                  | 4X                                                         | in/lbf-sec | ~      | UMM Mode Shape | $\sim$ | 6.437E-15 | 180   | 5.49E-16  | 180   | 2.064E-16 | 0                                      | 5.663E-18 | 0     | 4.438E-1 | M#          | 10 4              | <:5Z    | g/lbf-sec | $\sim$  | Residue Mode Sha | spe 🗸   | 2.342E-13 | 181.1 | 6.25E-14  | 181.1 | 3.128E-14 | 1.146 | 1.498E-15 | 1.146 | 9.2261 |
| M#11                  | 4Y                                                         | in/lbf-sec | ~      | UMM Mode Shape | ~      | 2.588E-14 | 0     | 2.5E-16   | 180   | 1.56E-15  | 180                                    | 3.218E-17 | 180   | 5.071E-1 | Ma          | 11 4              | /:5Z    | g/lbf-sec | ~       | Residue Mode Sha | ope 🗸   | 9.413E-13 | 1.146 | 2.846E-14 | 181.1 | 2.365E-13 | 181.1 | 8.515E-15 | 181.1 | 1.054  |
| M#12                  | 4Z                                                         | in/lbf-sec | ~      | UMM Mode Shape | ~      | 3.829     | 180   | 11.96     | 180   | 4.899     | 180                                    | 9.865     | 180   | 7.808    | M#          | 12 4              | Z:5Z    | g/lbf-sec | ~       | Residue Mode Sha | spe 🗸   | 139.3     | 181.1 | 1361      | 181.1 | 742.5     | 181.1 | 2610      | 181.1 | 162    |
| M#13                  | 5X                                                         | in/lbf-sec | ~      | UMM Mode Shape | ~      | 6.437E-15 | 180   | 5.49E-16  | 180   | 2.064E-16 | 0                                      | 5.634E-18 | 0     | 4.32E-17 | M#          | 13 5              | C:5Z    | g/lbf-sec | ~       | Residue Mode Sha | spe 🗸   | 2.342E-13 | 181.1 | 6.25E-14  | 181.1 | 3.128E-14 | 1.146 | 1.491E-15 | 1.146 | 8.9821 |
| <                     |                                                            |            |        |                |        |           |       |           |       |           |                                        |           |       | >        | <           |                   |         |           |         |                  |         |           |       |           |       |           |       |           |       | >      |

UMM Mode Shapes & Residue Mode Shapes

There are several differences between the properties of the FEA mode shapes in SHP: FEA Modes and the Residue mode shapes in SHP: Residues 5Z 15Z 25Z,

- SHP: Residues 5Z 15Z 25Z has three times as many M#s as SHP: FEA Modes
- The mode shapes in SHP: Residues 5Z 15Z 25Z have Roving & Reference DOFs
- The mode shapes in SHP: Residues 5Z 15Z 25Z have Measurement Type = Residue Mode Shapes
- The Residue Mode Shapes have **units of (g/lbf-sec)**
- The Residue Mode Shapes have phases that are slightly different from 0 or 180 degrees
- The *dominant motion* in the **Residue** mode shapes is *still in the Z-direction*

# **STEP 3 - SYNTHESIZING MULTI-REFERENCE FRFs**

• Press Hotkey 3 Multi-Ref FRFs

When Hotkey 3 is *pressed*, 480 FRFs are synthesized and stored in BLK: FRFs 5Z 15Z 25Z. These FRFs have 160 Roving DOFs each paired with one of the three Reference DOFs, (5Z, 15Z, 25Z.)

• Scroll through the FRFs using the vertical scroll bar *on the right side* of the graphics area

There are only *seven resonance peaks* in the FRFs. Also the phase only transitions *though 180 degrees* from either side of a resonance peak.

If these FRFs were curve fit *using a single-reference curve fitter*, mode shape estimates for seven modes would be found. The mode shapes of the repeated roots would *look like a summation of two mode shapes*.

*Multi-reference curve fitting* is required to extract the frequency, damping, & mode shape *of the repeated roots* that were used to synthesize the FRFs.



Magnitude & Phase of a Synthesized Driving Point FRF Showing Seven Peaks.

# **STEP 4 - MULTI-REFERENCE MODE INDICATOR**

The *first step of all curve fitting* is to determine *how many modes* are represented in the FRF data.

To calculate and display a multi-reference Indicator,

#### Press Hotkey 4 Mode Indicator

The curve fitting tabs open in **BLK: FRFs 5Z 15Z 25Z** and the multi-reference Mode Indicator curves are displayed, as shown below.

- Three multi-reference CMIF curves are shown on the lower left, one for each reference of FRF data
- *Thirteen* peaks are counted on the three Indicator curves and the number of peaks counted is displayed in the **Peaks** box on the Mode Indicator tab
- The resonance peaks are indicated with **red dots** on the Mode Indicator curves

MEscope contains two types of multi-reference Mode Indicators, a Multi-Reference CMIF and Multi-Reference MMIF.

- A separate multi-reference Indicator is calculated for each reference of FRF data
- The Mode Indicator curves are used for *resonance peak counting*
- A peak *at or near the same frequency* in two or more multi-reference Indicators indicates *closely-coupled modes or repeated roots*
- Modal Participation curves are also calculated along with each multi-reference Indicator
- The Modal Participation curves are used for weighting the FRF data during curve fitting



Multi-Reference CMIF Showing 13 Resonance Peaks.

# **STEP 5 - MULTI-REFERENCE QUICK FIT**

When a multi-reference Indicator is *chosen* on the **Mode Indicator** tab, the multi-reference Polynomial curve fitting method is *automatically chosen* on the **Frequency Damping** tab and the Polynomial method is *chosen* on the **Residues Save Shapes** tab.

The Quick Fit command completes the curve fitting process *in one step* by *successively executing* the methods chosen on the **Mode Indicator**, **Frequency Damping**, and **Residues Save Shapes** tabs.

In the Step 4, the multi-reference Mode Indicator was already selected, and its resonance peaks counted.

• Press Hotkey 5 Quick Fit

The modal parameters for the *thirteen resonance peaks* counting on the multi-ref CMIF Indicator are estimated and are listed as shown below. A red Fit Function has also been calculated and overlaid on its corresponding FRF.

• Scroll the bar on the right of the FRFs to display each red Fit Function overlaid on its FRF



Multi-Reference Quick Fit Results.

#### **MODAL PARTICIPATION**

The **Modal Participation** of each mode in each reference of FRF data is also listed in the **Modal Parameters** spreadsheet shown *on the lower right* above. Modal Participation was used to *weight the FRF data* during curve fitting.

- Modal Participation is a measure of how much each mode participates in each reference of FRF data
- Modal Participation has *magnitudes between* 0 & 1
- Modal Participation *near* 1.0  $\rightarrow$  the resonance is represented with a *large peak* in that reference of FRFs
- Modal Participation *near*  $0.0 \Rightarrow$  the resonance is represented with a *small peak* in that reference of FRFs

#### STEP 6 - COMPARING FEA & QUICK FIT MODE SHAPES

*Six pairs of repeated roots* and *one non-repeated root* were found from multi-reference curve fitting of the multi-reference FRFs. The frequency & damping of all *13* modes were recovered. But were the **FEA** mode shapes recovered?

- Press Hotkey 6 Quick Fit vs. FEA Mode Shape
- Select a different shape in either Shape Table on the right

The Modal Assurance Criterion (MAC) is used to *select and display* the mode shape from the other Shape Table that has the Maximum MAC with the mod shape that is selected.



Comparison of a Quick Fit with its Closest Matching FEA Mode Shape.

Select a different Reference DOF in SHP: Quick Fit Modes

Notice that the Quick Fit mode shape does not change when a different Reference DOF is selected. This is because *each reference* of mode shapes in **SHP: Quick Fit Mode Shapes** *contains the same mode shape*.

#### **DIFFERENT MODE SHAPES**

- Some of the Quick Fit mode shapes closely match with an FEA mode shape (MAC > 0.9), and some Quick Fit mode shapes do not (MAC < 0.9)
- All the repeated root mode shape pairs *"look alike"*, but those pairs with MAC < 0.9 are *rotated about 25 degrees* from the matching mode shape in the other Shape Table

This "*round trip*" showed that multi-reference curve fitting can recover the same mode shapes that were used to synthesize the multi-reference FRFs, but in some cases the Quick Fit mode shapes "*are rotated*" from the original **FEA** shapes used to synthesize the FRFs.

The mismatch of some repeated root mode shapes is due to the *arbitrary nature of repeated root mode shapes* that occur in structures with axi-symmetric geometries.

#### **STEP 7 - REVIEW STEPS**

To review all the steps of this App Note,

• Press Hotkey 7 Review Steps