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   MEscope Application Note 05 

Impact Testing Question 

INTRODUCTION 

There are two ways to perform a modal test on a structure using an impact hammer, a tri-axial accelerometer, and 
a 4-channel data acquisition system or analyzer.  One test is called a roving impact test and the other is called a 
roving response (or roving accelerometer) test. 

Modal Test #1: Roving Impact Test 

In a roving impact test, Frequency Response Function (FRF) measurements are made by attaching the tri-axial 
accelerometer at a fixed point on the structure (Point 9 below), and impacting the structure at points 1 through 9 
in the Z direction. Since three acceleration outputs are simultaneously measured for each force input, a total of 27 
FRFs are calculated from the acquired data. 

 
Modal Test #1: Roving Impact Test. 

Test #2: Roving Accelerometer Test 

In a roving accelerometer test, FRF measurements are made by repeatedly impacting the structure at the 
same point and in the same direction (9Z below). The tri-axial accelerometer is attached to point 1 for the first 
measurement and is then moved to point 2 for the second measurement, point 3 for the third measurement, 
and so on. Again, a total of 27 FRFs are calculated from the acquired data.  

 
Modal Test #2: Roving Accelerometer Test. 

THE QUESTION 

If both methods are applied to a structure with nine test points of interest, do the two test methods yield the 
same modal information? 
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Even though the test article looks like a flat plate, this question applies to testing any structure. The Z direction 
can be any direction you choose, and it can be a different direction at each test point. 

THE ANSWER 

The two modal tests do not yield the same modal information. Modal Test #1 will provide mode shapes with 
only nine degrees-of-freedom (DOFs). Each mode shape will contain motion only in the Z direction at the nine 
test points. 

Modal Test #2 will provide mode shapes that exhibit motion in three directions (X, Y & Z) at each of the nine 
test points. 

On the surface, Modal Test #1 appears to offer little merit. However, this test is a multiple reference test, and 
provides three estimates of each mode shape. All three mode shape estimates for each mode should be the 
same, thus confirming that a true resonance has been excited.  On the other hand, Modal Test #2 is a single ref-
erence test, and only provides one reference of data corresponding to the fixed DOF of the impact hammer.  

The FRFs calculated from the data acquired in Modal Test #1 can be curve fit using a multiple reference curve 
fitting method.  A multiple reference method can estimate modal parameters for closely coupled modes or re-
peated roots. Local modes that are segregated to local regions of the structure can also be identified from a 
multiple reference set of FRFs. FRFs from a single reference test like Modal Test #2 cannot be used in this man-
ner. 

In summary, Modal Test #1 is a multiple reference modal test yielding three estimates of each mode shape, 
but with only 1 DOF of motion (in the Z direction) at each of the nine test points. Modal Test #2 is a single refer-
ence modal test yielding mode shapes with 3 DOFs of motion (in the X, Y & Z directions) at each test point. 

DETAILS BEHIND THE ANSWER 

An experimental modal analysis characterizes the dynamic properties between N degrees-of-freedom (DOFs) of a 
structure. Each DOF of a mode shape defines the motion at a specific point on a structure in a specific direc-
tion.  

There are N2 possible FRFs that could be measured between pairs of the N DOFs on a structure. These FRFs 
can be arranged in an N by N square matrix, Each FRF is a function of frequency, and defines the motion (dis-
placement, velocity, or acceleration) at a DOF per unit of force applied at another DOF. 

For example, to completely characterize the dynamics between 100 DOFs of a structure with an FRF matrix, 
10,000 FRFs would be required. That would render modal testing, or Experimental Modal Analysis (EMA), very 
impractical.  It would be too time consuming! 

In general, it is not necessary to measure all N2 possible FRFs between N DOFs of a structure. The dynamics of 
most structures can be completely characterized by measuring just a single row or a single column of the FRF 
matrix. Therefore, only N FRFs normally need to be measured. 

The reason for this is that FRFs can be represented in terms of modal parameters, which in themselves complete-
ly characterize the dynamics of a structure. 

Modal analysis is a mathematical way of defining the resonant vibration of a structure in terms of its natural reso-
nances, or modes of vibration. 

Each mode of vibration is defined by three parameters 

Modal frequency 

Modal damping 

Mode shape 

NOTE: When a set of modes is used in Structural Dynamics Modification (SDM) to predict the effects of physi-
cal modifications to a structure, a fourth modal parameter (called modal mass) is also required. 
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A broad-band modal test such as an impact test is performed to excite enough modes and acquire enough data 
and identify all of the modes in a wide band of frequencies from a set of FRF measurements. Every FRF will ex-
hibit characteristics that reflect the frequency & damping of those resonances that were excited by the broad-band 
impact force.  A set of N FRFs can be curve fit to identify the frequency, damping, and mode shape associated 
with each resonance. Each mode shape will have N unique elements (or components) in it, one for each DOF 
measured. 

LOCAL MODES 

Often, a single FRF will not contain evidence (a resonance peak) of all of the modes that may exist in the band-
width of the FRF measurements. Modes that only have resonance peaks in a few FRFs are referred to as local 
modes. When a structure contains local modes, several (fixed) reference DOFs must be chosen in order to excite 
and identify all of the local modes from the resulting FRFs. 

CLOSELY COUPLED MODES 

More than N FRFs may also be required from structures with closely coupled modes. Two or more closely cou-
pled modes have nearly the same modal frequency and only exhibit one resonance peak in the FRFs. For 
structures with closely coupled modes, two or more rows or columns of the FRF matrix must be measured and 
curve fit using multiple reference curve fitting to identify the closely coupled modes. 

REPEATED ROOTS 

Structures with spatial symmetry often have repeated roots in them. A repeated root is two or more modes 
with the same modal frequency, but with different mode shapes. For structures with repeated roots, two or 
more rows or columns of the FRF matrix must be measured and curve fit using multiple reference curve fit-
ting to identify the repeated roots. 

FRFS IN TERMS OF MODAL PARAMETERS 

The FRF matrix can be written in partial fraction expansion form as a summation of pairs of terms, each pair 
of terms containing the contribution of a single mode of vibration. 
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Where Hij(jω) = the element in the ith row and jth column of the FRF matrix 

Each FRF represents the motion (displacement, velocity, or acceleration) at DOF(i) per unit of force applied at 
DOF(j).  FRFs have typical engineering units of m/N or in/lb. 

 

kp = the pole for mode(k) = 
kk j +−                               (rad/sec) 

k = damped natural frequency of mode(k) 

k = damping decay of mode(k).                             (rad/sec) 

Rij(k)= Residue between DOF(i) and DOF(j) for mode(k)       (m/N-sec or in/lb-sec) 
 

 = the forcing frequency (or independent variable)              (rad/sec) 

1−=j   and * indicates complex conjugation 

M = the number of modes 

Each FRF is a summation of 2M terms. Each term contains a residue divided by a pole. The denominator of 
all FRFs is the same. Each term in the summation contains the same pair of poles for each mode(k). 

Only the numerators of the FRFs are different. Each numerator contains a specific residue, Rij(k), which is de-
pendent upon the response DOF(i) and the excitation DOF(j), and is different for each mode(k). 
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Residues:  Residues are physical properties of a structure. They are referred to as the strength or participa-
tion of a mode between two structural DOFs. They also define the height of each resonance peak in an FRF. 
Residues have the same units as the FRF multiplied by (radians/second). 

The Residue matrix for each mode(k) is an (N by N) array of its residues. Normally, the FRF matrix is assumed to 
be symmetric. This follows from the following assumption, namely that most structures exhibit dynamic reci-
procity. 

Dynamic Reciprocity: The FRF between a force input at DOF(A ) and its resulting response at DOF(B) equals 
the FRF between a force input at DOF(B) and its resulting response at DOF(A). 

If the FRF matrix is assumed to be symmetric, then the Residue matrix is also symmetric. 

In a single-reference modal test, a single row or column of FRFs is calculated from the acquired data. Hence 
the same row or column of the Residue matrix for each mode is obtained by curve fitting the FRFs.  

In a multiple-reference modal test, multiple rows or columns of FRFs are calculated from the acquired data. 
Hence the same rows or columns of the Residue matrix for each mode are obtained by curve fitting the FRFs. 

It is shown later that each row or column of the Residue matrix contains the same mode shape for each reso-
nance that is represented in the set of FRFs. One row or column of FRFs (and therefore residues) is usually 
sufficient to indentify the mode shapes of all of the modes with frequencies in the bandwidth of the FRFs. 

GLOBAL MODES  

Since the same pole (modal frequency & damping) is contained in all FRFs acquired from the same structure, all 
of the M modal frequencies & damping could be identified from a single FRF. A larger number of N FRFs is ac-
quired solely to identify the residues for each mode, each row or column of which contains the same mode shape.  

Global Pole Property: The same pole (modal frequency & damping) for each mode is contained in every 
FRF that is acquired from a structure. 

Each modal residue defines the strength or height of the resonance peak for that mode in each FRF. Hence 
poles are easier to identify from some FRFs than in others, depending on the height of a resonance peak relative 
to the other peaks in the FRF. In general, the best estimate of each pole will be obtained from FRFs that have 
large resonance peaks (large residues) associated with that pole. 
 

 
Overlaid FRF Magnitudes showed global poles. 

The figure above shows the magnitudes of a number of FRFs overlaid on one another. Notice that the resonance 
peak in each FRF appears at the same frequency.  This shows that the modal frequency for each resonance (ap-
proximately the frequency of the resonance peak), is the same no matter where the FRFs were measured on the 
structure. This is the global property of modal frequencies. 
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LOCAL MODES 

It is not uncommon to encounter local modes in structures that are made up of different components,. The com-
bination of two plates joined together by four springs (shown below) is a simple example of such a structure. The 
small plate exhibits local modes that do not participate in the motion of the base plate below it.  
 

 
Local modes in a two-plate structure. 

Trapped Energy: Local modes result when excitation energy becomes trapped in a local region of a structure 
and is not readily dissipated throughout the structure. 

Local modes can also be deliberately design into a structure. In this simple plate example, the four mounting 
springs were placed on the centerlines of the small plate. These locations are nodal points in the Z-axis (vertical) 
direction for many of the modes of the small plate.  

The FRFs from the small plate (show in red below) contain different frequencies from those in the FRFs of the 
base plate (shown in blue). 

 
FRFs show different resonance peaks of local modes.
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MULIPLE REFERENCE MODAL TEST 

When local modes are suspected or encountered in a structure, a multiple reference modal test is required 
to ensure that no modes will be missed. For example, a single reference modal test on the base plate of the pre-
vious two-plate structure example would fail to capture the local modes of the small plate mounted above the 
base plate. 

Likewise, performing a single reference modal test on the small plate would identify its modes, but some local 
modes of the base plate would be missed. A single reference test would capture the global modes common to 
both plates, but depending on the reference used, would miss some of the local modes of one of the plates.  

Repeated Roots of a Square Plate 

Multiple reference modal testing is usually required when a structure is very simple but geometrically sym-
metrical. Consider the first five modes of the square plate with free-free boundary conditions shown below. The 
first three modes have unique poles which can be found by single reference modal testing, but the fourth & 
fifth modes are a pair of repeated-roots. 

 
A square plate with repeated roots.  
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A square plate like the one above will contain many pairs of repeated roots. The mode shape for one of the re-
peated roots is identical to the mode shape of the other, but is rotated about the axis of symmetry, in this case the 
Z -axis. Repeated roots of multiplicity higher than two are also possible but are rarely encountered in real struc-
tures. 

 
Driving-point FRFs from square plate. 

The experimental FRFs from a structure with repeated roots give no direct indication of repeated roots. The red 
dots on the FRFs above indicate repeated roots of the square plate, and the other resonance peaks indicate six 
distinct poles.  Multi-Reference curve fitting of multiple rows or columns of FRFs from the FRF matrix is required 
to correctly extract the mode shapes of repeated roots. 

MODE SHAPES VS. OPERATING DEFLECTION SHAPES 

The measured motion of N DOFs of any structure can be arranged in vector form as, 
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Where xi is the motion of DOF(i) of the structure. This vector is called an Operating Deflection Shape (ODS) or 
simply a deflection shape. 

Principles of Resonant Vibration 

Two principles govern the way resonant vibration can be represented in terms of mode shapes. 

1. All resonances (or modes of vibration) of a structure are excited at all frequencies 

2. All resonant vibration is made up of a linear combination of mode shapes 

Each mode shape (with N DOFs) can be written as a vector (with N components in it). The mode shape {uk} of 
mode(k) can be written as: 
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Where uik is the motion of the DOF(i) of mode(k). The mode shapes of M modes can be arranged as columns of 
an (M by N) mode shape matrix [U], 
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Second Principle of Resonant Vibration:  If the mode shapes are linearly independent of one another, any 
motion of a structure that is represented by an ODS can also be represented as a linear combination of the mode 
shapes of the structure. 

 
This principle is stated by the following equation, 
 

    qUx =  

 

Where q  is an M-vector of modal participation factors, also called generalized coordinates.  The modal par-

ticipation factors are unique and the above equation can be solved for them if and only if the mode shapes are 
linearly independent of one another. If the mode shapes are linearly independent of one another, any ODS can 
be uniquely represented in terms of mode shapes. 

DIFFERENTIAL EQUATIONS OF MOTION 

In Experimental Modal Analysis (EMA), we start with a set of experimental FRF and extract a different model of 
the structure in terms of its modal parameters, called a modal model. In Finite Element Analysis (FEA), we start 
with a set of differential equations of motion for the structure form which a modal model can also be extracted. 

Both FRFs and differential equations of motion represent the same dynamic properties of a structure. The modal 
model extracted from either the FRFs or the differential equations also represents the same dynamic properties of 
the structure. 

FEA is used to create three coefficient matrices used in a finite number of coupled differential equations to define 
the motion between N DOFs of a structure. These three (N by N) matrices contain the mass [M], damping [C] and 
stiffness [K] properties of the structure. These matrices, together with the N-vector {F} of the externally applied 
forces to the structure, are arranged as the set of linear second order differential equations, shown below 
 

          FxKxCxM =++   

 

 x  = an N-vector of the acceleration at each DOF 

 x = an N-vector of the velocity at each DOF 

 x  = an N-vector of the displacement at each DOF 

 [M], [C] and [K] are symmetric because the structure is assumed to exhibit Dynamic Reciprocity. The stiffness 
matrix [K] is also assumed to be positive definite, meaning than the structure does not require external forces to 
hold it in position. 

If the external forces on the right-hand side of the equations of motion are zero, the differential equations can 
still be solved for non-trivial solutions. As many as N non-trivial solutions exist, and they are called eigensolu-
tions.  Each eigensolution consists of an eigenvalue and an eigenvector. Each eigenvalue is a modal frequency 
and each eigenvector is a mode shape. 
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The mode shapes exhibit orthogonality with respect to both the mass [M] and stiffness [K] matrices. Mass matrix 
orthogonality is written 
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Where mk is called the modal mass of mode(k), and 
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Where mode(m) is a different mode than mode(k) 

Using this orthogonality property (and assuming that the damping matrix [C] is [0]), the differential equations 
can be re-written in a diagonalized form 
 

               

           QFUqmqm

FUqUKUqUMU

T

kkk

TTT

==+=

=+

2 


 

Where [U]T is the matrix transpose of [U] and the vector {Q} is called a generalized force. The diagonal elements 
(mk) are the modal masses, and are also called generalized masses. 

For lightly damped structures, it can also be assumed that the damping matrix is diagonalized by the mode 
shapes. Hence three new terms, modal mass, modal damping, & modal stiffness are defined by the equations 
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Unit Modal Mass Scaling 

An important property of mode shapes is that they are eigenvectors, meaning that their “shape” is unique but 
their values are not. However, the equation above shows that each modal mass and its associated mode shape 
are related to one another. Both are arbitrary, but if a value of one is chosen, the value of the other is then fixed. 

It is convenient to scale each mode shape so that its associated modal mass is equal to “1” mass unit (1 kg, 1 
lbm, etc.). Mode shapes that are scaled in this manner are called UMM mode shapes in MEscope. 

RESIDUES AND MODE SHAPES 

It has already been shown that residues are the numerator terms in the analytical expression for an FRF. There-
fore, residues retain the physical units of the FRFs obtained from an experimental modal analysis (EMA). Recall 
that the units of residues are the FRF units multiplied by (radians/second). The residues associated with each 
mode are physical constants, unlike mode shapes that can be arbitrarily scaled. 
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Each element of the residue matrix for mode(k) is equal to the product of two DOFs of its mode shape divided 
by its modal mass. Because of dynamic reciprocity, the FRF matrix is symmetrical, and therefore the residue 
matrix is also symmetrical.  
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uik = mode shape component for DOF(i) of mode(k) 

ujk = mode shape component for DOF(i) of mode(k) 

mk = modal mass of mode(k). 

This important relationship between residues and mode shapes is what makes modal testing (or EMA) practical. It 
can be stated as follows, 

Modal Testing Assumption: Every row & column of the residue matrix for a mode contains its mode shape.  
Therefore, any row or column of the FRF matrix can be measured and curve fit to yield the same row or column of 
residues, which contains the mode shape 

Every row and every column of the residue matrix contains the mode shape multiplied by a different DOF of the 
mode shape. This strong result makes modal testing and EMA practical. 

ANSWER TO THE QUESTION 

For Modal Test #1 (the roving impact test), the response sensor remained at a fixed location, oriented in fixed 
directions. Using a single axis sensor, with each new impact point, another element in one row of the FRF ma-
trix is calculated, and hence the same row of the residue matrix is calculated. 

Since a tri-axial accelerometer was used in Modal Test #1, there are three fixed response DOFs, hence FRFs in 
three rows of the FRF matrix are calculated for each impact point and residues in three rows of the Residue ma-
trix are calculated for each mode. 

For Modal Test #1, the calculated FRFs and residues, and the mode shape components derived from the resi-
dues, are tabulated below. 
 

          FRFs        Residues                   Mode Shape  

H9x,1z → R9x,1z = u9x u1z → u1z 

H9y,1z → R9y,1z = u9y u1z → u1z 

H9z,1z → R9z,1z = u9z u1z → u1z 

H9x,2z → R9x,2z = u9x u2z → u2z 

H9y,2z → R9y,2z = u9y u2z → u2z 

H9z,2z → R9z,2z = u9z u2z → u2z 

• •  • 

• •  • 

• •  • 

H9x,9z → R9x,9z = u9x u9z → u9z 

H9y,9z → R9y,9z = u9y u9z → u9z 

H9z,9z → R9z,9z = u9z u9z → u9z 
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The residue DOFs are the same as the FRF DOFs, so three rows of the residue matrix corresponding to the 
three DOFs of the tri-axial accelerometer would be arranged as shown below.  

Residue Matrix 
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The residues yield three estimates of each mode shape, and each shape has 9 DOFs 1Z, 2Z, …  9Z. Each resi-
due matrix row contains sufficient information to calculate the modal frequency, damping & mode shape of a 
mode, but only the third row contains a driving-point FRF (9Z:9Z) 

UMM mode shapes can be calculated by scaled the row of residues containing the driving point Residue 
(9Z:9Z). A modal model containing UMM mode shapes can be used with Structural Dynamics Modification 
(SDM) to explore physical modifications to the structure.  

For Modal Test #2, (the roving accelerometer test), the excitation DOF was fixed. Each time the tri-axial accel-
erometer was moved to a new point, three new FRFs in the column corresponding to the impact force were calcu-
lated. Three new residues would be calculated from these FRFs, and three new mode shape components would 
be the result for each mode. Hence, mode shapes with 27 DOFs are obtained for each mode in the bandwidth on 
the FRFs. 

For Modal Test #2, the calculated FRFs and residues, and the mode shape components derived from the resi-
dues, are tabulated below. 

          FRFs          Residues                   Mode Shape 

H1x,9z → R1x,9z = u1x u9z → u1x 

H1y,9z → R1y,9z = u1y u9z → u1y 

H1z,9z → R1z,9z = u1z u9z → u1z 

H2x,9z → R2x,9z = u2x u9z → u2x 

H2y,9z → R2y,9z = u2y u9z → u2y 

H2z,9z → R2z,9z = u2z u9z → U2z 

• • • 

• • • 

• • • 

H9x,9z → R9x,9z = u9x u9z → u9x 

H9y,9z → R9y,9z = u9y u9z → u9y 

H9z,9z → R9z,9z = u9z u9z → u9z 
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The residue DOFs are the same as the FRF DOFs, so one column of the residue matrix corresponding to the 
impact point DOF would be arranged as shown below.  

Residue Matrix 
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